MATH 1210 Assignment 2 Fall 2022

Due date: October 24, 5:00 PM

Attempt all questions and show all your work. Some or all questions will be marked.

- 1. Let $P(x) = x^4 + (2-i)x^3 + (1-2i)x^2 + (2-i)x 2i$. Find all real values of a such that when the polynomial P(x) is divided by ix + a the remainder is 0.
- 2. Find all solutions of the cubic equation $P(x) = x^3 + x^2 2x (3 + \sqrt{3}) = 0$.
- 3. Consider the polynomial $P(x) = 4x^6 4x^5 + 11x^4 7x^3 + 5x^2 + 2x 2$.
 - (a) Use the Rational Root Theorem to find all possible rational zeros of P(x).
 - (b) Use Descartes' Rules of Signs to determine the number of possible positive real zeros and the number of possible negative real zeros of P(x).
 - (c) Use the Bounds Theorem to determine how large the absolute value of a root of P(x) may be.
 - (d) If $(\sqrt{2})i$ is a complex root of P(x), find all zeros of P(x) and express P(x) as a product of linear factors.
- 4. Consider the polynomial $P(x) = 4x^4 + 5x^3 2x^2 + 5x 6$.
 - (a) Is x + 2 a factor of P(x)?
 - (b) What are the possible rational roots of P(x)?
 - (c) Show that if z is a complex number for which $|z| > \frac{5}{2}$ then z can not be a zero of P(x).
 - (d) What are the number of possible positive real zeros and the number of possible negative real zeros of P(x)?
 - (e) Show that P(x) has no zeros in the interval $\left[-5, -\frac{7}{3}\right]$.
 - (f) Use your answers in parts (a), (c) and (d) to improve the list of all possible rational zeros of P(x) in part (b).
 - (g) Find all zeros of P(x).
- 5. For each of the following, if it is true prove it and if it is not true give a specific example for which the statement is false.
 - (a) If r_1 is a zero of polynomial $P_1(x)$ and r_2 is a zero of polynomial $P_2(x)$, then $r_1 r_2$ is a zero of polynomial $P_1(x) P_2(x)$.
 - (b) If r is a zero of polynomial P(x), then r^2 is a zero of polynomial $P(x^2)$.
 - (c) If r is a zero of polynomial $P_1(x)$ of multiplicity k_1 and at the same time r is a zero of polynomial $P_2(x)$ of multiplicity k_2 , then r is a zero of polynomial $P_1(x)P_2(x)$ of multiplicity $k_1 + k_2$.

6. Let
$$A = \begin{bmatrix} 2 & 0 \\ 1 & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 & 1 & -3 \\ 1 & 0 & 2 \end{bmatrix}$, $C = \begin{bmatrix} -1 & 3 \\ -1 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 2 & 6 \\ 1 & -1 \\ 0 & 5 \end{bmatrix}$.

Evaluate each of the following expressions or explain why it is not defined.

- (a) $(5C+2A)(7D-B^T)$;
- (b) $CA^T 2BD$.
- 7. Let $A = \begin{bmatrix} -1 & -a \\ a & -2 \end{bmatrix}$; find all values of a for which $A^2 + 3A + 3aI_2 = \mathbf{0}$ where I_2 is the 2 × 2 identity matrix.
- 8. Let $\mathbf{u} = \langle 4, 1, 5 \rangle$, $\mathbf{v} = \langle 2, 1, 3 \rangle$ and $\mathbf{w} = \langle -a, 2, a \rangle$.
 - (a) Find a vector of length 6 in the opposite direction of $2\mathbf{u} 3\mathbf{v}$.
 - (b) Find value(s) of a for which the angle between $2\mathbf{u} 3\mathbf{v}$ and \mathbf{w} is $\frac{2\pi}{2}$.