Attempt all questions and show all your work. Some or all questions will be marked.

1. Let $P(x)=x^{4}+(2-i) x^{3}+(1-2 i) x^{2}+(2-i) x-2 i$. Find all real values of a such that when the polynomial $P(x)$ is divided by $i x+a$ the remainder is 0 .
2. Find all solutions of the cubic equation $P(x)=x^{3}+x^{2}-2 x-(3+\sqrt{3})=0$.
3. Consider the polynomial $P(x)=4 x^{6}-4 x^{5}+11 x^{4}-7 x^{3}+5 x^{2}+2 x-2$.
(a) Use the Rational Root Theorem to find all possible rational zeros of $P(x)$.
(b) Use Descartes' Rules of Signs to determine the number of possible positive real zeros and the number of possible negative real zeros of $P(x)$.
(c) Use the Bounds Theorem to determine how large the absolute value of a root of $P(x)$ may be.
(d) If $(\sqrt{2}) i$ is a complex root of $P(x)$, find all zeros of $P(x)$ and express $P(x)$ as a product of linear factors.
4. Consider the polynomial $P(x)=4 x^{4}+5 x^{3}-2 x^{2}+5 x-6$.
(a) Is $x+2$ a factor of $P(x)$?
(b) What are the possible rational roots of $P(x)$?
(c) Show that if z is a complex number for which $|z|>\frac{5}{2}$ then z can not be a zero of $P(x)$.
(d) What are the number of possible positive real zeros and the number of possible negative real zeros of $P(x)$?
(e) Show that $P(x)$ has no zeros in the interval $\left[-5,-\frac{7}{3}\right]$.
(f) Use your answers in parts (a), (c) and (d) to improve the list of all possible rational zeros of $P(x)$ in part (b).
(g) Find all zeros of $P(x)$.
5. For each of the following, if it is true prove it and if it is not true give a specific example for which the statement is false.
(a) If r_{1} is a zero of polynomial $P_{1}(x)$ and r_{2} is a zero of polynomial $P_{2}(x)$, then $r_{1}-r_{2}$ is a zero of polynomial $P_{1}(x)-P_{2}(x)$.
(b) If r is a zero of polynomial $P(x)$, then r^{2} is a zero of polynomial $P\left(x^{2}\right)$.
(c) If r is a zero of polynomial $P_{1}(x)$ of multiplicity k_{1} and at the same time r is a zero of polynomial $P_{2}(x)$ of multiplicity k_{2}, then r is a zero of polynomial $P_{1}(x) P_{2}(x)$ of multiplicity $k_{1}+k_{2}$.
6. Let $A=\left[\begin{array}{cc}2 & 0 \\ 1 & -1\end{array}\right], \quad B=\left[\begin{array}{ccc}4 & 1 & -3 \\ 1 & 0 & 2\end{array}\right], C=\left[\begin{array}{cc}-1 & 3 \\ -1 & 1\end{array}\right]$ and $D=\left[\begin{array}{cc}2 & 6 \\ 1 & -1 \\ 0 & 5\end{array}\right]$.

Evaluate each of the following expressions or explain why it is not defined.
(a) $(5 C+2 A)\left(7 D-B^{T}\right)$;
(b) $C A^{T}-2 B D$.
7. Let $A=\left[\begin{array}{cc}-1 & -a \\ a & -2\end{array}\right]$; find all values of a for which $A^{2}+3 A+3 a I_{2}=\mathbf{0}$ where I_{2} is the 2×2 identity matrix.
8. Let $\mathbf{u}=\langle 4,1,5\rangle, \mathbf{v}=\langle 2,1,3\rangle$ and $\mathbf{w}=\langle-a, 2, a\rangle$.
(a) Find a vector of length 6 in the opposite direction of $2 \mathbf{u}-3 \mathbf{v}$.
(b) Find value(s) of a for which the angle between $2 \mathbf{u}-3 \mathbf{v}$ and \mathbf{w} is $\frac{2 \pi}{3}$.

