
MATH 1210 Assignment 3 Fall 2023 Due date: November 27, 5:00 PM

Attempt all questions and show all your work. Some or all questions will be marked.

1. Consider the lines
ℓ1 : x = 3 + t, y = 1− t, z = 3t, t ∈ R,

ℓ2 :
x

2
= y + 2 =

z − 5

−1
,

the plane
Π : x+ y + 1 = 0,

and the point P (2, 1, 0).

(a) Find the point Q of intersection of the lines ℓ1 and ℓ2.
(b) Find an equation of the plane containing both lines ℓ1 and ℓ2.
(c) Find an equation of the plane which is perpendicular to the plane Π and passes through the points

P and Q.
(d) Find both parametric and symmetric equations (if possible) for the line which is parallel to the line

ℓ1 and passes through the origin.

Solution:

(a) Suppose that the point Q has coordinates (a, b, c). Since Q is on line ℓ1, then a, b and c have to
satisfy

a = 3 + t1, b = 1− t1, c = 3t1, for some t1 ∈ R.

Similarly, since Q is on line ℓ2, then a, b and c have to satisfy

a

2
= b+ 2 =

c− 5

−1
=: t2, for some t2 ∈ R.

Hence,

3 + t1 = 2t2, 1− t1 = −2 + t2, 3t1 = 5− t2 ⇐⇒ t1 − 2t2 = −3, t1 + t2 = 3, 3t1 + t2 = 5.

This implies that t1 = 1 and t2 = 2, and so Q(4, 0, 3).

(b) First, note that vectors u1 = ⟨1,−1, 3⟩ and u2 = ⟨2, 1,−1⟩ are parallel to ℓ1 and ℓ2, respectively.
If a plane contains both lines ℓ1 and ℓ2, then it has to be parallel to the vectors u1 and u2, and
so its normal vector n has to be perpendicular to both them. Therefore, n can be taken as the
cross product of u1 and u2:

n = u1 × u2 =

∣∣∣∣∣∣
î ĵ k̂
1 −1 3
2 1 −1

∣∣∣∣∣∣ = ⟨−2, 7, 3⟩

Hence, this plane has the following equation (using the fact that it passes through Q, but any
other point on ℓ1 or ℓ2 can be used):

−2(x− 4) + 7y + 3(z − 3) = 0 ⇐⇒ −2x+ 7y + 3z − 1 = 0



(c) Note that ⟨1, 1, 0⟩ is a normal vector to the plane Π. Let n denote a normal vector to the plane
that we are looking for in this part. Since this plane is perpendicular to Π, normal vectors to
these planes are perpendicular, i.e., n ⊥ ⟨1, 1, 0⟩. Also, since this plane passes through P and
Q, the vector −−→

PQ is parallel to it, and so it is perpendicular to n: n ⊥
−−→
PQ. Hence, we can take

n to be the cross product of ⟨1, 1, 0⟩ and −−→
PQ = ⟨2,−1, 3⟩:

n = ⟨1, 1, 0⟩ × ⟨2,−1, 3⟩ =

∣∣∣∣∣∣
î ĵ k̂
1 1 0
2 −1 3

∣∣∣∣∣∣ = ⟨3,−3,−3⟩

In fact, since n = 3⟨1,−1,−1⟩, the vector ⟨1,−1,−1⟩ is also a normal to the plane that we
are looking for. Hence, using the fact that the plane passes through the point P , we get the
following equation:

(x− 2)− (y − 1)− z = 0 ⇐⇒ x− y − z − 1 = 0

(d) As we already discussed in part (b), the vector u1 = ⟨1,−1, 3⟩ is parallel to the line ℓ1, and so
it is also parallel to the line that we are looking for. Using the fact that this line passes through
the origin we get the following parametric equations:

x = t, y = −t, z = 3t, t ∈ R.

Hence, the symmetric equations for this line are:

x =
y

−1
=

z

3
.

2. Consider the following linear system of equations.
x− y + z − 2w = 1
−x+ y + z + w = −1
−x+ 2y + 3z − w = 2
x− 4y − 13z + 8w = −8

(a) Find the reduced row-echelon form (RREF) of the augmented matrix.
(b) Find all solutions of this system (i.e., determine the solution set).

Solution: (a) We reduce the augmented matrix of this system to RREF as follows
1 −1 1 −2 1

−1 1 1 1 −1
−1 2 3 −1 2
1 −4 −13 8 −8


→

R2→R2+R1

R3→R3+R1

R4→R4−R1


1 −1 1 −2 1
0 0 2 −1 0
0 1 4 −3 3
0 −3 −14 10 −9

 →

R4→R4+3R3
1 −1 1 −2 1
0 0 2 −1 0
0 1 4 −3 3
0 0 −2 1 0


→

R2↔R3

R4→R4+R2


1 −1 1 −2 1
0 1 4 −3 3
0 0 2 −1 0
0 0 0 0 0


R1→R1−R3/2

R2→R2−2R3

R3→R3/2

→
1 −1 0 −3/2 1
0 1 0 −1 3
0 0 1 −1/2 0
0 0 0 0 0


R1→R1+R2

→


1 0 0 −5/2 4
0 1 0 −1 3
0 0 1 −1/2 0
0 0 0 0 0


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(b) The general solution of this linear system is

x =
5

2
t+ 4, y = t+ 3, z =

1

2
t, w = t, t ∈ R.

Alternatively, this solution can be written as

x =
5

2
w + 4, y = w + 3, z =

1

2
w, w ∈ R.

3. Let

A =


1 −1 1 0 1

−1 0 1 1 1
−1 2 3 0 4
1 −4 0 8 5

 .

(a) While reducing A to RREF, a student in MATH 1210 started the reduction process by doing the
following: 

1 −1 1 0 1
−1 0 1 1 1
−1 2 3 0 4
1 −4 0 8 5


→

R2→R2+R4

R3→R3−R2

R4→R4+R3


1 −1 1 0 1
0 −4 1 9 6
0 2 2 −1 3
0 −2 3 8 9

 .

Explain why this student will not get a correct answer and what mistake they made.
(b) Find the correct reduced row-echelon form (RREF) of A.

Solution: (a) The student tried to combine several elementary row operations into one step of the
reduction process. However, this is only allowed if this step can then be expanded into a sequence
of steps each using only one elementary row operation, which would not be possible in this case.
Note that, no matter what the original rows R2, R3 and R4 are, the sum of rows 2 and 3 after this
erroneous reduction step will always be equal to row 4. So, the student effectively “lost” one row
during this reduction.
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(b) This matrix A can be reduced to RREF as follows
1 −1 1 0 1

−1 0 1 1 1
−1 2 3 0 4
1 −4 0 8 5


→

R2→R2+R1

R3→R3+R1

R4→R4−R1


1 −1 1 0 1
0 −1 2 1 2
0 1 4 0 5
0 −3 −1 8 4


→

R2→−R2

R3→R3+R2

R4→R4−3R2
1 −1 1 0 1
0 1 −2 −1 −2
0 0 6 1 7
0 0 −7 5 −2

 →
R3→R3+R4


1 −1 1 0 1
0 1 −2 −1 −2
0 0 −1 6 5
0 0 −7 5 −2

 →
R3→−R3

R4→R4−7R3
1 −1 1 0 1
0 1 −2 −1 −2
0 0 1 −6 −5
0 0 0 −37 −37

 →

R4→R4/(−37)


1 −1 1 0 1
0 1 −2 −1 −2
0 0 1 −6 −5
0 0 0 1 1


→

R2→R2+R4

R3→R3+6R4


1 −1 1 0 1
0 1 −2 0 −1
0 0 1 0 1
0 0 0 1 1


R1→R1−R3

R2→R2+2R3

→


1 −1 0 0 0
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1


R1→R1+R2

→


1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1



4. Consider the system  x+ y + 2z = a
2x+ by + 4z = 1
y + bz = 1

In each case, determine all real numbers a and b which give the indicated number of solutions, if possible.
If no such a and b exist, give the reason why not.

(a) no solutions
(b) exactly one solution
(c) infinitely many solutions
(d) exactly two solutions

Solution: First of all, a linear system can only have 0, 1 or infinitely many solutions, and so the
case (d) is impossible.
There are two slightly different approaches to solving this problem, and we’ll discuss both of them.
Approach 1: Since this is a system with 3 equations and 3 unknowns, we immediately know that
it will have a unique solution if the determinant of the coefficient matrix is not equal to 0. This
determinant is ∣∣∣∣∣∣

1 1 2
2 b 4
0 1 b

∣∣∣∣∣∣ = 1 ·
∣∣∣∣b 4
1 b

∣∣∣∣− 2 ·
∣∣∣∣1 2
1 b

∣∣∣∣ = (b2 − 4)− 2(b− 2) = b(b− 2).

So, if b ̸= 0 and b ̸= 2, then the system has a unique solution for any a ∈ R. We now consider the
cases when b = 0 and b = 2 separately (since the rank of the coefficient matrix in each of these cases
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is less than 3, i.e., there will be at least one zero row to the left of the vertical line in the augmented
matrix, we know that the system will have either no or infinitely many solutions for these values of
b).
Case b = 0: If b = 0, the augmented matrix for the system can be reduced toward REF as follows 1 1 2 a

2 0 4 1
0 1 0 1

 R1→R1−R3

→

 1 0 2 a− 1
2 0 4 1
0 1 0 1

 →
R2→R2−2R1

 1 0 2 a− 1
0 0 0 3− 2a
0 1 0 1

 →
R2↔R3 1 0 2 a− 1

0 1 0 1
0 0 0 3− 2a


Hence, if 3 − 2a = 0, then the system will have infinitely many solutions. If 3 − 2a ̸= 0, then the
system will have no solutions.
Case b = 2: If b = 2, the augmented matrix for the system can be reduced toward REF as follows 1 1 2 a

2 2 4 1
0 1 2 1

 →
R2→R2−2R1

 1 1 2 a
0 0 0 1− 2a
0 1 2 1

 →
R2↔R3

 1 1 2 a
0 1 2 1
0 0 0 1− 2a


Hence, if 1 − 2a = 0, then the system will have infinitely many solutions. If 1 − 2a ≠ 0, then the
system will have no solutions.
Summarizing the above, we conclude that we have the following cases: (a) the system has no solutions
if b = 0 and a ̸= 3/2, or if b = 2 and a ̸= 1/2; (b) the system has a unique solution if b ̸= 0 and
b ̸= 2 (a can be any real number); (c) the system has infinitely many solutions if b = 0 and a = 3/2,
or if b = 2 and a = 1/2.
Approach 2: We set up the augmented matrix for the system right away and then start reducing
it to REF noting possible cases: 1 1 2 a

2 b 4 1
0 1 b 1

 →
R2→R2−2R1

 1 1 2 a
0 b− 2 0 1− 2a
0 1 b 1

 →
R2↔R3

 1 1 2 a
0 1 b 1
0 b− 2 0 1− 2a

 →
R3→R3−(b−2)R2 1 1 2 a

0 1 b 1
0 0 −b(b− 2) 3− 2a− b


We now see that the system will have a unique solution if b(b− 2) ̸= 0. It will have infinitely many
solutions if b(b− 2) = 0 and 3− 2a− b = 0. Finally, the system will have no solutions if b(b− 2) = 0
and 3− 2a− b ̸= 0. One now arrives at the same summary of all possible cases as above.

5. Find all basic solutions to the following homogeneous system and express the general solution as a linear
combination of these basic solutions: x1 + 2x2 − x3 + x4 + x5 = 0

−x1 − 2x2 + 2x3 + x5 = 0
−x1 − 2x2 + 3x3 + x4 + 3x5 = 0

Solution: Since this is a homogeneous system, we can work with the coefficient matrix instead of
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the augmented matrix. The coefficient matrix can be reduced to RREF as follows: 1 2 −1 1 1
−1 −2 2 0 1
−1 −2 3 1 3

 →
R2→R2+R1

R3→R3+R1

1 2 −1 1 1
0 0 1 1 2
0 0 2 2 4

 →
R3→R3−2R2

1 2 −1 1 1
0 0 1 1 2
0 0 0 0 0

 R1→R1+R2

→

1 2 0 2 3
0 0 1 1 2
0 0 0 0 0


Therefore, variables x2, x4 and x5 are parameters (x1 and x2 are leading variables), and the general
solution can be written as

x1

x2

x3

x4

x5

 =


−2x2 − 2x4 − 3x5

x2

−x4 − 2x5

x4

x5

 = x2


−2
1
0
0
0

+ x4


−2
0
−1
1
0

+ x5


−3
0
−2
0
1

 , x2, x4, x5 ∈ R.

Basic solutions (written as column matrices) are:
−2
1
0
0
0

 ,


−2
0
−1
1
0

 ,


−3
0
−2
0
1

 .

6. Use Cramer’s rule to solve for z without solving for any of the other variables: 5x+ y − z = −7
2x− y − 2z = 6
3x+ 2z = −8

Solution: The coefficient matrix for this system is

A :=

5 1 −1
2 −1 −2
3 0 2

 .

Since the variable z corresponds to the third column, we replace the third column with the column
consisting of constants on the right-hand side of all equations in the system to obtain

A3 :=

5 1 −7
2 −1 6
3 0 −8

 .

Now,

det(A) = 3 ·
∣∣∣∣ 1 −1
−1 −2

∣∣∣∣+ 2 ·
∣∣∣∣5 1
2 −1

∣∣∣∣ = 3(−2− 1) + 2(−5− 2) = −9− 14 = −23,

where we used the cofactor expansion with respect to the third row. Also,

det(A3) = 3 ·
∣∣∣∣ 1 −7
−1 6

∣∣∣∣− 8 ·
∣∣∣∣5 1
2 −1

∣∣∣∣ = 3(6− 7)− 8(−5− 2) = −3 + 56 = 53.
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Hence, using Cramer’s Rule, we conclude that

z =
det(A3)

det(A)
= −53

23
.

7. Suppose that A and B are 2023× 2023 matrices such that AB = −BA. Show that either det(A) = 0 or
det(B) = 0.

Solution: Since det(λA) = λn det(A), for any n× n matrix A (where λ is a constant), we have

det(AB) = det(−BA) ⇐⇒ det(A) det(B) = (−1)2023 det(B) det(A) ⇐⇒ det(A) det(B) = 0.

Hence, either det(A) = 0 or det(B) = 0.

8. Show that det(A+BT ) = det(AT +B) for any n× n matrices A and B.

Solution: We have

det(A+BT ) = det
[
(A+BT )T

]
= det(AT + (BT )T ) = det(AT +B),

and the proof is complete.

9. Determine whether each of the following sets of vectors is linearly dependent or linearly independent.

(a) ⟨1,−1⟩, ⟨2, 1⟩, ⟨1, 3⟩
(b) ⟨1,−1, 1⟩, ⟨2, 1, 2⟩, ⟨1, 3,−1⟩
(c) ⟨11,−1, 1, 0⟩, ⟨0, 0, 0, 0⟩, ⟨0, 3,−1,−2⟩

Solution:

(a) This is a set of 3 vectors with 2 components each. Since 3 > 2, this set is necessarily linearly
dependent.

(b) Since this is a set of 3 vectors with 3 components each, it is linearly dependent if and only if the
determinant of the 3 × 3 matrix whose columns are the components of these vectors has value
zero. Since∣∣∣∣∣∣

1 2 1
−1 1 3
1 2 −1

∣∣∣∣∣∣ = 1 ·
∣∣∣∣1 3
2 −1

∣∣∣∣− 2 ·
∣∣∣∣−1 3
1 −1

∣∣∣∣+ 1 ·
∣∣∣∣−1 1
1 2

∣∣∣∣ = (−1− 6)− 2(1− 3) + (−2− 1)

= −7 + 4− 3 = −6 ̸= 0,

we conclude that the set is linearly independent.

(c) Any set of vectors containing the zero vector is linearly dependent.

10. Let u = ⟨−1, 3, 0, 1⟩, v = ⟨3, 1, 2, 0⟩ and w = ⟨3, 11, 4, 3⟩. Either express the vector y = ⟨3, 2, 4, 0⟩ as a
linear combination of u, v and w, or show that this is not possible.
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Solution: If y is a linear combination of u, v and w, then there exist c1, c2, c3 ∈ R such that

y = c1u+ c2v + c3w ⇐⇒ ⟨3, 2, 4, 0⟩ = c1⟨−1, 3, 0, 1⟩+ c2⟨3, 1, 2, 0⟩+ c3⟨3, 11, 4, 3⟩
⇐⇒ ⟨3, 2, 4, 0⟩ = ⟨−c1 + 3c2 + 3c3, 3c1 + c2 + 11c3, 2c2 + 4c3, c1 + 3c3⟩,

and so we arrive at a linear system of equations with 3 unknowns and 4 equations. The augmented
matrix for this system is 

−1 3 3 3
3 1 11 2
0 2 4 4
1 0 3 0

 .

Note that the columns of this matrix are u, v, w and y written as column vectors. We now start
reducing this matrix to REF:

−1 3 3 3
3 1 11 2
0 2 4 4
1 0 3 0


R1→−R1

R2→R2+3R1

→
R4→R4+R1


1 −3 −3 −3
0 10 20 11
0 2 4 4
0 3 6 3

 →
R3→R3/2

R4→R4/3


1 −3 −3 −3
0 10 20 11
0 1 2 2
0 1 2 1

 →

R4→R4−R3
1 −3 −3 −3
0 10 20 11
0 1 2 2
0 0 0 −1


Hence, the system is inconsistent, and so such numbers c1, c2 and c3 do not exist. Therefore, y is
not a linear combination of u, v and w.
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