MATH 1210 Final Exam Fall 2023

Date and Time: December 14 at 1:30 PM

Duration: 2 Hours

Attempt all questions and show your work. Simplify your answers as much as possible.

1. (6 points) Evaluate the sum

$$\sum_{j=6}^{25} j(6-j)$$

using the identities

$$\sum_{j=1}^{n} j = \frac{n(n+1)}{2}, \qquad \sum_{j=1}^{n} j^2 = \frac{n(n+1)(2n+1)}{6}$$

You don't have to simplify expressions like $\frac{10 \cdot 11 \cdot 21}{6}$.

- 2. Consider the polynomial $P(x) = 2x^3 3x^2 + 3x 1$.
 - (a) (5 points) Find the remainder when P(x) is divided by 2x + i. Your answer should be written in Cartesian form.
 - (b) (6 points) Find all zeros of P(x)
- 3. (6 points) Consider the line ℓ with parametric equations

$$x = -2, y = 1 - t, z = 3t + 4$$
 $(t \in \mathbb{R}).$

Find **all vectors** of length 2 that are parallel to the line ℓ .

4. Consider the following linear system of equations:

- (a) (3 points) Without solving the system, determine the number of solutions for this system. Explain why your answer is correct without solving the system.
- (b) (9 points) Find all **basic** solutions of the system.
- 5. Consider 3×3 invertible matrices A and B such that $A = \begin{pmatrix} 4 & 1 & 1 \\ -1 & 7 & 3 \\ -4 & 1 & 2 \end{pmatrix}$ and $\det(B) = \frac{1}{2}$.
 - (a) (6 points) Evaluate $det(2B^T A^{-1})$.
 - (b) (6 points) Use Cramer's rule to solve the linear system $AX = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}$ for x only, where $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$. (You are **not** asked to find values of y and z. No mark will be given for any other method.)
- 6. Let $\mathbf{u} = \langle 1, 7, -1 \rangle$, $\mathbf{v} = \langle -2, -7, 2 \rangle$ and $\mathbf{w} = \langle 1, 7, 0 \rangle$.
 - (a) (4 points) Determine whether the vectors **u**, **v** and **w** are linearly dependent or linearly independent.
 - (b) (8 points) Express the vector $\mathbf{x} = \langle -5, 0, 7 \rangle$ as a linear combination of \mathbf{u} , \mathbf{v} and \mathbf{w} . Show your work.

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 2 & 4 \\ 0 & 0 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} -1 & -2 & -2 \\ 2 & -4 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- (a) (4 points) Without finding A^{-1} , use the adjoint method to find the entry in second row and third column of A^{-1} .
 - (You are **not** asked to find all entries of A^{-1} . No mark will be given for any other method.)
- (b) (7 points) Find $(A + B)^{-1}$.
- 8. Suppose that $\mathbf{u} = \langle 2, 1 \rangle$, $\mathbf{v} = \langle -1, 1 \rangle$, and let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that $T(\mathbf{u}) = \langle 1, 0 \rangle$ and $T(\mathbf{v}) = \langle 0, -1 \rangle$.
 - (a) (3 points) Find $T(2\mathbf{u} \mathbf{v}) \mathbf{u} + \mathbf{v}$.
 - (b) (8 points) Find the matrix associated with T.

9. Let

$$A = \begin{bmatrix} 1 & 2 & 1 \\ -2 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$$

- (a) (5 points) Find all eigenvalues of A.
- (b) (8 points) Find all eigenvectors corresponding to the real eigenvalue of A.
- 10. (6 points) Let A be a 3×3 symmetric matrix with real entries such that all three eigenvalues of A are distinct. If it is known that $\mathbf{u} = \langle -\sqrt{5}, -2, 1 \rangle$ and $\mathbf{v} = \langle 0, 1, 2 \rangle$ are two eigenvectors corresponding to two different eigenvalues of A, find **all** eigenvectors corresponding to the third eigenvalue of A.