Question 1. Prove using mathematical induction that for all $n \ge 1$,

$$1 + 4 + 7 + \dots + (3n - 2) = \frac{n(3n - 1)}{2}.$$

Question 2. Use the Principle of Mathematical Induction to verify that, for n any positive integer, $6^n - 1$ is divisible by 5.

Question 3. Verify that for all $n \ge 1$, the sum of the squares of the first 2n positive integers is given by the formula

$$1^{2} + 2^{2} + 3^{2} + \dots + (2n)^{2} = \frac{n(2n+1)(4n+1)}{3}$$

Question 4. Consider the sequence of real numbers defined by the relations

$$x_1 = 1 \text{ and } x_{n+1} = \sqrt{1 + 2x_n} \text{ for } n \ge 1$$

Use the Principle of Mathematical Induction to show that $x_n < 4$ for all $n \ge 1$.

Question 5. Show that $n! > 3^n$ for $n \ge 7$.

Question 6. Let $p_0 = 1$, $p_1 = \cos \theta$ (for θ some fixed constant) and $p_{n+1} = 2p_1p_n - p_{n-1}$ for $n \ge 1$. Use an extended Principle of Mathematical Induction to prove that $p_n = \cos(n\theta)$ for $n \ge 0$.

Question 7. Consider the famous Fibonacci sequence $\{x_n\}_{n=1}^{\infty}$, defined by the relations $x_1 = 1$, $x_2 = 1$, and $x_n = x_{n-1} + x_{n-2}$ for $n \ge 3$.

- (a) Compute x_{20} .
- (b) Use an extended Principle of Mathematical Induction in order to show that for $n \ge 1$,

$$x_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right].$$

(c) Use the result of part (b) to compute x_{20} .