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1. The following are short answer questions.

(a)[3] What is the polar form of −2
√

3 + 2i?

(b)[3] Find the cross product of the vectors −→u = [1,−1, 3] and −→v = [4,−6,−2].

(c)[4] Use the adjoint to find the inverse of the matrix A =

(
7 4
−2 3

)
.
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(d)[3] Let T be the transformation from R3 to R3 defined by T (−→x ) = A−→x where

A =

3 −2 2
2 −5 10
1 −4 8

. Show that

2
2
1

 is an eigenvector of T and find the

associated eigenvalue.

(e)[3] Simplify the expression 4 + 3i+
2− 3i

5− 2i
into Cartesian form.

(f)[3] Write the following in sigma notation (do not evaluate) :
1− 3 + 5− 7 + · · ·+ (4n− 3)− (4n− 1) .
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(g)[2] Suppose the coefficient matrix of a homogeneous system is a 5× 7 matrix of
rank 4. How many linearly independent basic solutions will it have?

(h)[2] Are the vectors {[1, 3, 7], [3, 2,−5], [4,−1, 6], [2,−7, 2]} linearly dependent or
linearly independent. Justify your answer.

(i)[7] Find, in exponential form, all solutions to z3 = −8i
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2.[10] Use mathematical induction to show that for all n ≥ 1 that

2 + 5 + 8 + . . .+ (6n− 1) = n(6n+ 1) .
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3.[18] Consider the polynomial P (x) = 3x4 − 13x3 + 31x2 − 39x+ 10.

(a) Apply Descartes rules of signs to P (x). Be specific about what information
it gives.

(b) Apply the bound theorem to P (x). Be specific about what information it
gives (Write it in a sentence).

(c) What are the possible rational roots of P (x)? Include any information from
part a and/or part b.
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(d) Find all roots of P (x) = 3x4 − 13x3 + 31x2 − 39x+ 10
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4.[14] Consider the vectors:

−→u1 = [1, 2, 3] −→u2 = [−1, 3, 2] −→u3 = [4, 2, 5] −→v = [5, 3, 6]

(a) Show that the vectors {−→u1,
−→u2,
−→u3} are linearly independent? (Justify your

answer.)

(b) Use Cramer’s rule to solve −→v = c1
−→u1 + c2

−→u2 + c3
−→u3 for the variables c1, c2

and c3.

(c) Write −→v as a linear combination of {−→u1,
−→u2,
−→u3}.
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5.[12] (a) Using the direct method, find the inverse of the matrix A =

2 2 −1
3 −2 4
1 −1 2

 .

(No other method will be accepted)

(b) Use the information from part a to find a solution to :
2x1 + 2x2 − x3 = 2
3x1 − 2x2 + 4x3 = −1
x1 − x2 + 2x3 = 3

(No other method will be accepted)
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6.[8] Let T be the transformation from R3 to R3 that is defined by T (x̃) = Ax̃ where

A =

 2 −1 2
−1 3 −1
2 −1 2

. Find all eigenvalues of T .

(DO NOT SOLVE FOR THE EIGENVECTORS)
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7.[8] Let T be the transformation from R3 to R3 that is defined by T (x̃) = Ax̃ where

A =

 1 1 1
1 1 −1
−1 1 3

. T has eigenvalues λ = 2, 1 (One of the eigenvalues has

multiplicity 2). Find all eigenvectors associated with each eigenvalue of T .


