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1.[3] Write the following in sigma notation:

3 + 7 + 11 + . . .+ (16n+ 11) .

Solution:

4n+3∑
j=1

(4j − 1)

Aside: To find the upper limit of summation, we want to find j so that
4j − 1 = 16n+ 11 or 4j = 16n+ 12, so j = 4n+ 3.

2.[5] Evaluate
12∑
j=1

(j − 3)(j + 2).

Solution:

12∑
j=1

(j − 3)(j + 2) =
12∑
j=1

(j2 − j − 6)

=
12∑
j=1

j2 −
12∑
j=1

j − 6
12∑
j=1

1

=

(
(12)(13)(25)

6

)
−
(

(12)(13)

2

)
− 6(12)

= 650− 78− 72

= 500
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3.[4] For what value of k does the polynomial P (x) = 3x4 + 5x3 + kx2 − x + 6 have
x+ 2 as a factor?

Solution:

Since (x+ 2) is a factor of P (x), then −2 is a root of P (x). So

P (−2) = 0

3(−2)4 + 5(−2)3 + k(−2)2 − (−2) + 6 = 0

3(16) + 5(−8) + 4k + 2 + 6 = 0

48− 40 + 4k + 8 = 0

4k + 16 = 0

4k = −16

k = −4

4.[6] Simplify
8− 2i

5 + 3i
. Convert your answer into polar form.

Solution:

8− 2i

5 + 3i
=

(8− 2i)(5− 3i)

(5 + 3i)(5− 3i)

=
40− 24i− 10i+ 6i2

25− 15i+ 15i− 9i2

=
34− 34i

34
= 1− i

Since |1− i| =
√

12 + (−1)2 =
√

2 and
arg(1− i) = −π

4
, then

1− i =
√

2(cos(−π
4

) + i sin(−π
4

)).
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5.[10] Use induction to prove the following for all n ≥ 1:

2 + 2 · 3 + 2 · 32 + 2 · 33 + · · ·+ 2 · 32n−1 = 32n − 1

Solution:

Let Pn be the statement 2 + 2 · 3 + 2 · 32 + 2 · 33 + · · ·+ 2 · 32n−1 = 32n − 1.

If n = 1 :
2 + 2 · 3 + 2 · 32 + 2 · 33 + · · ·+ 2 · 32n−1 = 2 + 2 · 3 = 8
and 32n − 1 = 32 − 1 = 8
So P1 is true.

Assume that Pk is true.
Then 2 + 2 · 3 + 2 · 32 + 2 · 33 + · · ·+ 2 · 32k−1 = 32k − 1.

Want: 2 + 2 · 3 + 2 · 32 + 2 · 33 + · · ·+ 2 · 32(k+1)−1 = 32(k+1) − 1

Now,

2 + 2 · 3 + 2 · 32 + 2 · 33 + · · ·+ 2 · 32(k+1)−1

= 2 + 2 · 3 + 2 · 32 + 2 · 33 + · · ·+ 2 · 32k+1

= 2 + 2 · 3 + 2 · 32 + 2 · 33 + · · ·+ 2 · 32k−1 + 2 · 32k + 2 · 32k+1

= 32k − 1 + 2 · 32k + 2 · 32k+1

= 32k + 2 · 32k + 6 · 32k − 1

= 9 · 32k − 1

= 32(k+1) − 1

Hence Pk+1 is also true.

Since P1 is true and Pk implies Pk+1, by PMI, Pn is true for all n ≥ 1.
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6.[10] Find all complex numbers z such that z4 = −18
√

2 − 18
√

2i. Express your
answer(s) in exponential form, using principle value for arguments.

Solution:

| − 18
√

2 − 18
√

2i| =
√

(−18
√

2)2 + (−18
√

2)2 =

√
182 ·

√
2

2
+ 182 ·

√
2

2
=

√
182
√

4 = 18 · 2 = 36
arg(−18

√
2− 18

√
2i) = −3π

4

The exponential form is −18
√

2− 18
√

2i = 36ei(
−3π

4
)

Let z = reiθ, so z4 = r4ei(4θ).
So the equation z4 = −18

√
2− 18

√
2i becomes r4ei(4θ) = 36ei(

−3π
4

) .

From this, we know that r4 = 36 and 4θ = −3π
4

+ 2nπ.

The modulus of all four roots is r = 4
√

36 =
√

6.

The arguments of the roots are

θ = (
1

4
)(
−3π

4
+ 2nπ)

=
−3π

16
+

2nπ

4

=
(−3 + 8n)π

16

The arguments of the four roots can be found by finding angles for the values
of n = 0, 1, 2, 3.

So θ0 =
−3π

16
,

θ1 =
5π

16

θ2 =
13π

16

and θ3 =
21π

16

(
≡ −11π

16

)
Hence the four solutions are

√
6e(

−3π
16

)i,
√

6e(
5π
16

)i,
√

6e(
13π
16

)i, and
√

6e(
−11π

16
)i.
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7. Let P (x) = x4 − 4x3 + 8x2 − 8x− 60.

(a)[4] Apply Descartes’ rule of signs to P (x).

Solution:

Since there are 3 sign changes in P (x), the number of positive real roots
of P (x) is 3 or 1.

P (−x) = x4 + 4x3 + 8x2 + 8x− 60

Since P (−x) has 1 sign change, the number of negative real roots of P (x)
is 1.

(b)[8] Given that 1− 3i is a root of P (x), express P (x) as a product of real linear
and real irreducible quadratic terms.

Solution: We know that since 1− 3i is a root, then so 1 + 3i is also a root.
Hence (x− (1− i)) and (x− (1 + i)) are both factors.

So (x− (1− 3i))(x− (1 + 3i)) = (x2 − 2x+ 10) is also a factor.

x2 − 2x− 6

x2 − 2x+ 10
)

x4 − 4x3 + 8x2 − 8x− 60

x4 − 2x3 + 10x2

− 2x3 − 2x2 − 8x

− 2x3 + 4x2 − 4x

− 6x2 + 12x− 60

−6x2 + 12x− 60

0

To find the roots of x2 − 2x− 6 we use x = −b±
√
b2−4ac

2a
, so

x =
−(−2)±

√
(−2)2 − 4(1)(−6)

2(1)

=
2±
√

4 + 24

2

=
2± 2

√
7

2

= 1±
√

7

(Note that these two roots are real, but irrational.)

Hence P (x) = (x− (1 +
√

7))(x− (1−
√

7))(x2 − 2x+ 10).


