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1.[8] Use the principle of mathematical induction to prove that 3 divides n3 − n, for
all positive integers n ≥ 2.
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2.[7] Calculate the remainder (in Cartesian form) when the polynomial P (x) = x10 +
ix+ 2 is divided by x− (1 + i).

3.[6] Determine an equation of the plane containing the point P (2, 3,−2) and the line
with symmetric equations

x− 1

6
=
y + 1

2
=
z − 3

−2
.
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4. Let P (x) be the polynomial 8x3 − ax2 + 25.

(a)[3] List the possible rational solutions of P (x) = 0.

(b)[4] Calculate the value(s) of a such that 2x− 5 is a factor of P (x).

(c)[5] Using the value(s) of a in part (b), find all roots of P (x).
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5.[7] Solve the following system of linear equations by Gauss-Jordan Elimination:

x+ 2y + 5z = 5

x+ 3y + 3z = 4

y − 2z = −1

6.[5] Calculate the determinant of


2 4 6 8
2 4 6 13
0 1 2 3
0 2 5 6

 .
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7. Let A,B be 3× 3 matrices with |A| = −2 and |B| = 3.

(a)[4] Calculate
∣∣3B−1A2BT

∣∣ .

(b)[3] Calculate |adj(A)| .

8.[6] For the system of linear equations,

x+ 3y + 3z = 4

x+ 2y + 5z = 6

y − z = 0,

use Cramer’s Rule to solve for z. (Do not solve for x or y)



DATE: June 25, 2015

EXAMINATION: Techniques of Classical and Linear Algebra
COURSE: MATH 1210

UNIVERSITY OF MANITOBA
FINAL EXAMINATION

PAGE: 6 of 11
TIME: 2 hours

EXAMINER: Harland

9. (a)[7] Are the following vectors linearly independent or linearly dependent? If
they are linearly dependent, express one vector as a linear combination of
the others.

u = 〈1, 0, 2, 0〉, v = 〈0, 2,−3, 0〉, w = 〈2, 4,−2, 0〉

(b)[2] Are the following vectors linearly dependent or independent? Justify your
answer.

u = 〈−1, 0, 2〉, v = 〈−1, 2, 3〉
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(c)[4] Are the following vectors linearly dependent or independent? Justify your
answer.

u = 〈1, 0, 2〉, v = 〈−1, 3, 0〉, w = 〈0, 3, 4〉

10. For the matrix A =

 1 2 3
2 4 5
0 1 2

 :

(a)[6] Use row reduction (the direct method) to calculate A−1 if it exists.
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(b)[2] Use the information from part (a) to solve the system

x+ 2y + 3z = 2

2x+ 4y + 5z = 1

y + 2z = 1.

(c)[3] Use the information from part (a) to solve the system

x+ 2y = 2

2x+ 4y + z = 1

3x+ 5y + 2z = 1.
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11.[8] The matrix

A =

 1 2 3
4 4 5
5 1 2


has determinant of −11 and the adjoint is

adj(A) =

 3 −1 −2
17 −13 y
x 9 −4

 .

Solve for x, y, and A−1.
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12. Let T be the linear transformation

T :
v′1 = v1 − 4v2
v′2 = 2v1 − 3v2 + 1

.

(a)[2] Is T linear? Justify your answer.

(b)[1] Calculate T 〈1, 2〉.

(c)[3] Determine v such that T (v) = 〈0, 0〉.
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13. Let A be the matrix

 1 2 4
0 4 6
0 5 11

 .

(a)[6] Calculate the eigenvalues of A. (Note: it may be helpful to use that λ = 1
is an eigenvalue)

(b)[6] Calculate the eigenvectors corresponding to λ = 1.

(c)[2] A 4 × 4 matrix B has eigenvalues 1, 2, 3, 4. Solve Bx = −3x. Justify your
answer.


