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1.[12] Given a square matrix A, the powers of A (denoted by An, n > 0) are defined
recursively by A2 = A · A and An = A · An−1 for n ≥ 3.

Suppose that for some x ∈ R, A =

[
1 x
0 x

]
.

(a) Calculate A2 and A3.

(b) Use induction to show that for all n ≥ 1,

An =


 1

n∑

`=1

x`

0 xn


 .
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2.[6] Let z1 and z2 be two complex numbers, z1 having argument θ1 and z2 having
argument θ2. Find the argument of

z4
1

z2
2 .

3.[7] Let p(x) = x4 − x3 + 6x2 + 14x− 20. Given that p(1− 3i) = 0, find all the zeros
of p(x).
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4.[7] Let

A =

[
1 0 2
−1 3 1

]
B =

[
2 −1
−4 3

]
.

Find (BA)T .

5.[8] Suppose that the matrix




1 0 2 0 −3 0 3
0 1 1 0 2 0 4
0 0 0 1 2 0 2
0 0 0 0 0 1 −1




is the RREF of the augmented matrix of a system of linear equations Ax = b.

(a) How many unknowns are in the system?

(b) What is the rank of the coefficient matrix of the system?

(c) How many “free” variables (parameters) occur in the solutions of the system?

(d) Find all solutions identifying clearly which variables are the “free” variables.
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6.[10] Consider the two planes
Π1 : x + 2y + 3z = 6

Π2 : −2x + y + z = 0.

(a) Use Gauss-Jordan elimination to find the line of intersection of these two
planes. Write your answer in parametric form.

(b) Find a vector along the line of intersection.

(c) Show that the vector found in part (b) is perpendicular to the normal vectors
of both planes.
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7.[6] Consider the linear system

x2 + x3 = 2
5x1 + x2 − x3 = 3
2x1 − 3x2 − 3x3 = 6

(a) Justify the claim that this system has a unique solution.

(b) Find x2.

8.[6] Consider the set of vectors {v1,v2,v3,v4,v5} where

v1 =




2
0
1


 , v2 =




0
0
0


 , v3 =




0
2
2


 , v4 =




7
−1
3


 , v5 =




4
−2
0


 .

(a) Give one reason why you know this set is linearly dependent (No work re-
quired).

(b) Give one reason why at least one of the vectors v1,v3,v4,v5 may be expressed
as a non-trivial linear combination of the others.

(c) Find a subset of these vectors (containing as many vectors as possible) that
forms a linearly independent set.
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9.[4] Let A be any 3 × 3 matrix such that AT = −A. Show that A is non-invertible
(i.e., singular).

10.[10] Let

A =




1 0 −1 0
0 −2 0 1
2 0 1 0
0 −3 0 2


 .

(a) Evaluate det(A) (Show all your work and briefly describe the method being
used).

(b) Find the missing entry in

adj(A) =




−1 0 −1 0
0 6 0 −3
2 0 −1 0
0 0 −6


 .

(c) Find A−1.
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11.[12] Consider the linear transformation in E3 given by v = Au where

A =




0 2 0
0 0 1
−1 0 0


 .

(a) Describe the effect of the transformation on the unit vectors î, ĵ, k̂. Write
your answers as linear combinations of î, ĵ, and k̂.

(b) Show that A is invertible.

(c) Use the results of part (a) to determine the effect of the transformation
v = A−1u on the unit vectors î, ĵ, k̂.

(d) Find A−1 using the information in part (c).
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12.[12] Consider the linear transformation v = Au with

A =




0 1 −1
0 −1 1
0 0 0


 .

(a) Find the eigenvalues of A.

(b) Find the eigenvectors of A corresponding to the eigenvalue having multiplic-
ity 2.

(c) Express your answer in part (b) as a linear combination of two linearly
independent vectors.
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