Math 1210 Assignment 2 Winter 2012

Due Wed Feb 8; hand in as instructed in class. Same instructions as in Assignment #1. Note: one staple in the top left corner is required (the pile is too big for the marker to deal with loose sheets!).

- 1. Express in the forms required. Unless otherwise instructed, in polar or exponential forms provide the *principal argument*.
 - (a) $\frac{2+3i}{3-2i} + (\overline{1-2i} + (2+i)^3)^2$ in Cartesian form.
 - (b) $(\sqrt{27} 3i)^5$ in polar and exponential form;
 - (c) $\sqrt{18} \left(\cos \frac{19\pi}{4} + i \sin \frac{19\pi}{4} \right)$ in Cartesian and exponential form;
 - (d) $7e^{-\frac{11\pi}{3}i}$ in Cartesian and polar form.
- 2. Find all zeros (in \mathbb{C}) of the polynomial $f(x) = x^{10} 64x^5 + 1024$, and their multiplicity (HINT: the polynomial can be factored over \mathbb{Z} .) Give your answers in exponential form.
- 3. Factor the polynomial $g(x) = x^5 + x^4 + 4x^2 + 7x + 3$ over \mathbb{R} into a product of irreducible linear and quadratic factors. (HINT: first find all rational roots.)
- 4. (a) Use long division to find the quotient and remainder when $x^5-3x^4+2x^2-x+7$ is divided by x^2+x+1 . Express your answer in the form (polynomial) = (polynomial) · (quotient) + (remainder).
 - (b) Use the remainder theorem to find the remainder when $f(x) = (2+i)x^4 2ix^3 + (2-i)x + 2$ is divided by (1+i)x + 2.
 - (c) For which value(s) of d, if any, is the polynomial x 4 a factor of the polynomial $g(x) = x^3 3x^2 + 5x d$?
- 5. (a) Find a 6th degree polynomial with *real* coefficients, for which 1+i is a zero, 2-i is a zero, and -2 is a zero of multiplicity two.
 - (b) How many positive zeros does $p(x) = x^7 x^5 + 4x^4 x^3 + x^2 + x + 1$ have? How many negative zeros?
 - (c) Assuming only that $a, b, c, d, e \in \{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5\}$, use results from Section 2.2.2 to list all possible rational roots of $6x^5 + ax^4 + bx^3 + cx^2 + dx + 5 = 0$.
- 6. In each case your response should by justified by an appropriate reference (by number) to a Theorem in Section 2.2.1 or 2.2.2.
 - (a) Suppose a, b, c, d, e > 0, and all the zeros of the polynomial

$$q(x) = x^5 - ax^4 + bx^3 - cx^2 - dx - e_1$$

are real. How many of them (counting multiplicity) are positive and how many are negative?

(b) If r has multiplicity 2 as a zero of polynomial f(x) and multiplicity 3 as a zero of polynomial g(x). Explain why it is also a zero of $h(x) = f^2(x) + g^2(x)$. Can we determine it's multiplicity? If so what is the multiplicity? If not, why not?