Math 1210 Assignment 4 Winter 2012 (UPDATED VERSION!)

Due Friday March 23; hand in as instructed in class. Same instructions as in Assignment #1. One staple in the top left corner is required.

1. Suppose A and B are square 2×2 matrices and $\det(B) \neq 0$. One of the following statements is true and the other is false (in general). Which is which? Justify the true one by mentioning two facts from the course; provide a counterexample for the other one.

(a)
$$\det(AB^{-1}) = \frac{\det(A)}{\det(B)};$$

(b)
$$\det(A - B) = \det(A) - \det(B)$$
.

2. Use a series of cofactor expansions along strategically chosen rows/columns to obtain determinant |A|, and use a series of elementary row and/or column operations to obtain |B|, where:

A =	1	2	1	2		B =	1	2	3	4
	-1	0	2	0			-4	3	-2	1
	1	3	0	0	,		3	1	2	4
	3	0	-1	0			1	1	1	1

3. Solve the following system by following the steps of Gauss-Jordan elimination *exactly*:

x_1	_	x_2	+	x_3	=	-2
$-x_1$	+	x_2	+	$3x_3$	=	-1
$3x_1$	_	$3x_2$	+	$2x_3$	=	-10

4. Solve the following system using Cramer's Rule:

5. Find all values of x such that the following determinant is zero:

$$\begin{vmatrix} x-1 & 1 & 1 \\ 1 & x-1 & 1 \\ 1 & 1 & x-1 \end{vmatrix}$$

- 6. Let \mathbf{x}_1 be a solution to the non-homogeneous system whose matrix equation is $A\mathbf{x} = \mathbf{b}$, and let \mathbf{x}_2 be a solution to the corresponding homogeneous system $A\mathbf{x} = \mathbf{0}$. Prove that, for any $c \in \mathbb{R}$, $\mathbf{x}_1 + c\mathbf{x}_2$ is a solution to the first system, $A\mathbf{x} = \mathbf{b}$.
- 7. Find a real (i.e., all entries real numbers) 2×2 matrix A that satisfies $A^2 = -I$. Use the properties of determinants to show that there are no real 2011×2011 matrices A which satisfy this equation.