Math 1210 Assignment 5 Winter 2012

Due Monday April 2; hand in as instructed in class.

Same instructions always. One staple in the top left corner is required.

- 1. (a) Express $\mathbf{x} = [5, 0, 3, 3]$ as a linear combination of vectors $\mathbf{u} = [1, 1, -1, 2], \ \mathbf{v} = [3, 2, 1, 4], \ \mathbf{w} = [2, 0, 2, 1].$
 - (b) Show that $\mathbf{y} = [1, 1, 1, 1]$ is not a linear combination of $\mathbf{u}, \mathbf{v}, \mathbf{w}$ (from in part 1a).
 - (c) Show that every vector in \mathbb{R}^3 is a linear combination of vectors $\mathbf{a} = [-1, 1, 1]$, $\mathbf{b} = [1, -1, 1]$ and $\mathbf{c} = [1, 1, -1]$.
- 2. (a) A 4×4 matrix A has determinant -3. What is the determinant of adjA?
 - (b) Find the adjoint of matrix $B = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 3 & 1 \\ 0 & 1 & 1 \end{pmatrix}$.
 - (c) Find |B|; use this and your answer from 2b to find B^{-1} .
 - (d) Use your answer from 2c to solve the system

x_1			+	$2x_3$	=	0
$2x_1$	+	$3x_2$	+	x_3	=	3
		x_2	+	x_3	=	-3

- 3. Use the Matrix Inversion Algorithm (also called the Direct Method in the text) to find M^{-1} , where $M = \begin{pmatrix} 4 & 2 & 3 \\ 3 & 3 & 2 \\ 3 & 2 & 2 \end{pmatrix}$.
- 4. Show that one of the following sets of vectors is dependent, and that the other one is independent.

$$S_1 = \{ [1, 1, 0, 0], [1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 1] \}$$

$$S_2 = \{ [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 0, 1], [1, 1, 1, 0] \}$$

5. Let $\mathbf{u}, \mathbf{v}, \mathbf{x}, \mathbf{y}$, be vectors and suppose each of \mathbf{x}, \mathbf{y} is a linear combination of \mathbf{u} and \mathbf{v} .

Prove that, if \mathbf{w} is a linear combination of \mathbf{x} and \mathbf{y} , then \mathbf{w} is also a linear combination of \mathbf{u} and \mathbf{v} .

6. (a) $S : \mathbb{R}^3 \to \mathbb{R}^3$ is a linear transformation and $\mathbf{u}, \mathbf{v}, \mathbf{w}$ and \mathbf{x} are vectors such that

$$S(\mathbf{u}) = [1, 3, -2], S(\mathbf{v}) = [2, 2, 0], \text{ and } S(\mathbf{w}) = [-1, 1, 1].$$

If $\mathbf{x} = \mathbf{u} + 2\mathbf{v} + 3\mathbf{w}$, find $S(\mathbf{x})$.

(b) Suppose $T: \mathbb{R}^4 \to \mathbb{R}^4$ is a linear transformation such that

$$T[1, 1, 1, 1] = [1, 2, 3, 4], T[0, 1, 1, 1] = [2, 2, 0, 2],$$

 $T[0,0,1,1] = [2,-1,3,2], \, {\rm and} \ T[0,0,0,1] = [0,0,0,0].$

- i. Find the matrix of T.
- ii. Use the matrix of T to find T[3, 2, 1, 1].