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1.[20] SHORT ANSWER QUESTIONS

(a) Express the following sum in sigma notation:

1− 5 + 9− 13 + · · · − 77 + 81.

(b) Simplify the following complex number. Give your answer in Cartesian form.

25i

3 + 4i
− (3− 2i)

(c) Put the complex number from part b into polar form.

(d) State the Rational Roots Theorem.
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2.[8] The following formulas are known from class:

n∑
i=1

i =
n(n+ 1)

2
,

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
,

n∑
i=1

i3 =
n2(n+ 1)2

4
.

Use these formulas and the properties of summation to obtain the value of the
following sum:

100∑
s=11

(
s(s+ 1)2 + 1

)
.

DO NOT simplify your answer (but eliminate sigma notation).
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3.[10] Use mathematical induction to show that for all integers n ≥ 1,

3 + 7 + 11 + · · ·+ (8n− 1) = 2n(4n+ 1).
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4.[8] Solve the following equation:

x6 − x3 + 1 = 0

Express your answer as a set of numbers in exponential form.

5.[8] Find all values of k such that x− 1
2
(
√

3 + i) is a factor of the polynomial

P (x) = x24 − 2kx6 + k2.

(HINT: The Remainder Theorem is helpful. So is working in exponential form.)
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6.[12] Let p(x) = 3x4 + 2x3 + x2 + 3x+ 5.
(In this question do not attempt to factor p(x) or to solve p(x) = 0)

(a) Use Descartes’ Rule of Signs to say what are the possible numbers of positive
and negative roots of p(x) = 0.

(b) According to the Bounds Theorem, what is the largest absolute value a zero
of p(x) may have?

(c) According to the Rational Roots Theorem, what are the possible rational
zeros of p(x)?

(d) Based on the above information, show the smallest set of numbers that would
have to be examined, to find all the rational roots of p(x) = 0?
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7.[12] Given vectors u = [1, 2,−2], v = [0, 1, 3] and w = [2, 2, 1]

(a) Evaluate 2(3u + w)− || u || (u + v).

(b) Find cos θ, where θ is the angle between u and v.

(c) Find a vector that is orthogonal to both u and w.

(d) Show that the lines
L1 : 2u + sv (s ∈ R) and
L2 : 3v + tu (t ∈ R)
intersect in a point by finding their point of intersection.
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8.[12] Given the three points A(1, 2, 3), B(5, 2,−1) and C(3, 4, 5) in R3, find:

(a) An equation for the plane P containing A,B and C, in point-normal form.

(b) An equation for plane P , in standard form.

(c) A vector equation for the line perpendicular to P and passing through C.

(d) Parametric (scalar) equations for the line through A and B.

(e) Show that 4ABC is a right triangle.


