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1.[8] Use mathematical induction on positive integer n ≥ 2 to prove that
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2.[6] Use the formula
m
∑

k=1

k2 =
1

6
[m(m+1)(2m+1)] to evaluate

4
∑

j=−5

[

(j+7)2−2(j+6)
]

.

3.[7] Find, in simplified form, the Cartesian form of (
√
6 +

√
2 i)10 .
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4.[7] Find, in simplified form, the complex number z that satisfies the equation

(1− i)2(1 + i)2 + (4− 3i) z = 1 + 4i .

5. Consider the polynomial equation of P (x) = 0 where

P (x) = 3x4 − 18x3 + 28x2 + 12x− 20 .

(a)[3] Use Descartes’ Rule of Signs to find the possible number of positive and
negative roots of P (x) = 0 .

⇒ Continued next page
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(b)[3] What are the possible rational zeros of P (x) = 0 ?

(c)[3] Use Bounds Theorem to eliminate some of the possible zeros you found in
part (b).

(d)[6] Given that 3 + i is a root of P (x) , find all other roots.
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6.[6] Let A =

(

1 2 −1 0
3 0 1 4

)

and B =

(

1 1 0 0
1 4 1 −1

)

. Find a matrix X such

that ABT − X = I .

7. For a > 0 let u =< 2a,−a, a > , v =< 1, 1, 2 > and w =< 3, 4, 1 > .

(a)[5] Find the angle between u and v .

(b)[4] Find the value of a for which u+ v and w are perpendicular.
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8. Consider the point P (2, 3, 5) and the two planes Π1 : 2x + 3y − z = 0 and
Π2 : −x+ y + z = 0 .

(a)[2] Is the point P on the plane Π1 ?

(b)[4] Show that the two planes Π1 and Π2 are perpendicular.

(c)[6] Find parametric equations of the line through the point P and parallel to
the line 2x+ 3y − z = 0 , −x+ y + z = 0 .


