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1.[9] Let A be the 2× 2 matrix

[
3 −1
4 −1

]
. Use the principle of mathematical induction

to prove that

An =

[
2n+ 1 −n

4n 1− 2n

]
for all n ≥ 1.
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2. Let P (x) be the polynomial P (x) = 2x3 − 5x2 + 6x− 2.

(a)[3] Verify that 1 + i is a root of the equation P (x) = 0.

(b)[7] Find all roots of the equation P (x) = 0.



DATE: April 23, 2015

EXAMINATION: Techniques of Classical and Linear Algebra
COURSE: MATH 1210

UNIVERSITY OF MANITOBA
FINAL EXAMINATION

PAGE: 3 of 10
TIME: 2 hours

EXAMINERS: various

3.[7] The following two lines are parallel:

L1 :
x− 1

2
=
y − 3

−1
=
z − 2

5
, and L2 :

x+ 4

2
=

y

−1
=
z + 1

5
.

You do not have to show they are parallel. Find the standard equation of the
plane containing them.
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4. Consider the vectors

v = 〈1,−1, 4〉, w = 〈2,−7,−3〉

and let θ denote the smallest angle between them.

(a)[3] Use the dot product of v and w to find cos θ.

(b)[4] Use the cross product of v and w to find sin θ.

(c)[2] Verify that cos2 θ + sin2 θ = 1.
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5. Let A and B denote 5× 5 matrices such that det(A) = −3 and det(B) = 4. Find
the determinant of

(a)[3] BA−1

(b)[4] (adj(A))−1

(c)[3]
1

2
ABT
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6.[9] Consider the vectors

u = 〈1, 5,−4〉, v = 〈2,−4, 2〉, w = 〈1,−30, 21〉.

Verify that the vectors u, v and w are linearly dependent and express w as a
linear combination of u and v.
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7.[6] Consider the system of equations

tx− y = 2, x− ty = 1 + t,

in the variables x and y. Find all values of t for which the system is inconsistent.

8.[9] The matrix

A =

 1 2 3
2 5 8
−3 5 9


has determinant of −4 and the adjoint is

adj(A) =

 x −3 1
−42 18 y
25 −11 1

 .

Find x, y, and A−1.
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9. For the matrix A =

 1 3 −1
3 9 −2
0 1 2

 :

(a)[6] Use the direct method, also called the row reduction method, to find A−1 if
it exists. (No credit will be given to any other method.)

(b)[3] Use the information from part (a) to solve the system

x+ 3y − z = 1

3x+ 9y − 2z = 2

y + 2z = 3.
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Continued from last page

(c)[3] Use the information from part (a) to solve the system

x+ 3y = 1

3x+ 9y + z = 2

−x− 2y + 2z = 3.

10. Let T be the transformation

T :
v′1 = v1 − 3v2
v′2 = 2v1 − 8v2

.

(a)[2] Is T linear? Justify your answer.

(b)[1] Find T 〈2, 5〉.

(c)[4] Find v such that T (v) = 〈1, 2〉.
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11. Let A be the matrix

 −1 2 3
0 1 3
0 4 5

 .

(a)[6] Find all the eigenvalues of A. (Note: it may be helpful to use that λ = −1
is an eigenvalue.)

(b)[6] Find two linearly independent eigenvectors corresponding to λ = −1.


