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1. The following are short answer questions. Parts are not necessarily related.

(a)[5] Use the direct method to find the inverse of the matrix A =

(
4 5
3 4

)
.

(b)[3] Is the following set of vectors linearly dependent or linearly independent?
Justify your answer.

{〈1, 1〉, 〈−3, 12〉, 〈6,−7〉}

(c)[4] For what values of k is the polynomial P (x) = x4+kx3−x2+x+12 divisible
by x + k?
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(d)[5] Is the following set of vectors linearly dependent or linearly independent?
Justify your answer.

{〈1, 1, 2〉, 〈−3, 1, 2〉, 〈6,−7, 3〉}

(e)[5] Let T be the transformation from R4 to R4 defined by T (x) = Ax where

A =


1 −1 2 5
−1 3 4 2
2 4 5 −7
5 2 −7 2


i. Note that AT = A. What is the term for matrices having this property?

ii. How many eigenvalues, including multiplicity, does T have? (Why?)

iii. Without computing the eigenvalues, state how many of the eigenvalues
are real. (Why?)

(f)[3] Give in symmetric form an equation of the line that is perpendicular to the
plane 2x− 3y + z = 15 and passes through the point P (1, 2, 3).
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(g)[4] Suppose a, b, c, d ∈ R and that 3− i and 2 + i are two of the zeros (over C)
of the polynomial p(x) = x4 + ax3 + bx2 + cx + d. Find all the other zeros
of p(x). What is the value of d?

(h)[4] For the following, let
[
A|b

]
be the augmented matrix of a system of 6 linear

equations and 6 unknowns. For each blank entry in the following table, there
is only one correct value given the other information in that row. Fill in the
blanks, using 0 for ’no solutions’, 1 for ’unique solution’ and ∞ for ’infinitly
many solutions’.

Rank of Rank of Number of solutions
A

[
A|b

]
of AX = b

3 0

3 3

5 ∞

3 0

4 ∞

6

5 6
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(i)[6] For z1, z2 ∈ C, show that z1 − z2 = z1 − z2.

(j)[4] Fill in the blanks as appropriate:

For an n× n matrix A, the following are equivalent:

• A is invertible (A−1 exists).

• The reduced row echelon form of A is

• det(A)

• The rank of A is .

• AX = 0 has solution(s).
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(k)[6] Use Cramer’s rule to solve the following system of equations:

4x1 + 3x2 = −2
11x1 + 7x2 = 3

(l)[4] Let T be the transformation from R3 to R3 defined by T (x) = Ax where

A =

 4 1 0
−2 1 0
−2 0 1

.

Which of the following vectors are eigenvectors of T? If the vector is an
eigenvector, what is the associated eigenvalue?

v1 =

 7
−7
−7

, v2 =

 1
−1
1
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2.[8] Find all the roots of the polynomial

p(x) = x4 + 3x3 − 2x2 − 10x − 12 .
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3.[8] Find all solutions to z3 = −27.
Give your answers in both Cartesian and exponential form.
Solutions in exponential form should have arguments in principal value.
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4. (a)[7] Write the vector 〈4, 7,−6〉 as a linear combination of 〈1, 2,−1〉, 〈1, 3, 2〉 and
〈2, 4,−1〉.

(b)[3] Suppose T is a linear transformation from R3 to R3 where

T (〈1, 2,−1〉) = 〈0, 1, 1〉, T (〈1, 3, 2〉) = 〈1, 0, 1〉, and T (〈2, 4,−1〉) = 〈0, 1, 1〉.
Find T (〈4, 7,−6〉).
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5. We define two lines as follows:

`1 : x = 3 + t, y = 4− t, z = −1 + t ; t ∈ R

`2 : x = 4 + s, y = −3 + 3s, z = −1 + 2s ; s ∈ R

(a)[3] Show that these lines do not have a point of intersection.

(b)[5] Find an equation of a plane that contains all of the points of `1 and none of
the points of `2.
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6.[10] Suppose A =

(
0 2
3 0

)
.

Use mathematical induction to show that A2n = 6nI2 for all n ≥ 1.
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7. Suppose A =

a b c
d e f
g h i

 has determinant 2.

What is the determinant of the following matrices?

(a)[2] B1 =

 d e f
3a 3b 3c
g h i



(b)[2] B2 =

 a b c
a + 2d b + 2e c + 2f
g − 4a h− 4b i− 4c



(c)[2] B3 =

a + d− g b + e− h c + f − i
d− g e− h f − i
g − d h− e i− f
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8. (a)[9] Use the adjoint method to find the inverse of the matrix

A =

 1 −3 1
2 −4 −1
−1 5 −2

 .

(b)[3] Use the information from part (a) to find the solution to :

x1 − 3x2 + x3 = −2
2x1 − 4x2 − x3 = 3
−x1 + 5x2 − 2x3 = 5
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9.[6] Let T be the transformation from R3 to R3 defined by T (x) = Ax where

A =

0 1 3
1 1 4
1 −1 −2

. Find all eigenvalues of T . Show your work.
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10.[9] Let T be the transformation from R3 to R3 defined by T (x) = Ax where

A =

−2 1 2
1 −2 2
1 1 −1

.

The eigenvalues of T are −3 and 1 (one of these values is a multiple root of the
characteristic polynomial). Find all the eigenvectors of T .


