
MATH 1210 Assignment 5 Solutions 17R-T2

This assignment is optional and does not need to be handed in. Attempt all questions,
write out nicely written solutions (showing all your work), and the solutions will be posted
on Fri, Apr 7, 2017, at which point you can mark your own work. If you have any questions
regarding differences between what you wrote and what the solution key says, please contact
your professor. At least one question from this assignment will be found on Quiz 5.

1. A linear system of equations has 4 variables, a, b, c, and d. The RREF of the augmented
matrix for this system is 

1 −2 0 1 −1
0 0 1 3 2
0 0 0 0 0
0 0 0 0 0

 .

Find three different solutions for this system.

Solution: There are infinitely many valid solutions. Any three solutions of the form

a = −1− t+ 2s, b = s, c = 2− 3t, d = t, s, t ∈ R

would suffice. For instance,

Solution #1 : a = −1, b = 0, c = 2, d = 0 (s = t = 0)

Solution #2 : a = 1, b = 1, c = 2, d = 0 (s = 1, t = 0)

Solution #3 : a = −2, b = 0, c = −1, d = 1 (s = 0, t = 1)

2. Find all values for a and b such that

[
−1 2
−2 4

] [
−a a
b −b

]
=

[
0 0
0 0

]
.

Solution: [
a+ 2b −a− 2b
2a+ 4b −2a− 4b

]
=

[
0 0
0 0

]
a+ 2b = 0, −a− 2b = 0, 2a+ 4b = 0, −2a− 4b = 0.


1 2 0
−1 −2 0
2 4 0
−2 −4 0


R2 ← R2 +R1

R3 ← R3 − 2R1

R4 ← R4 + 2R1


1 2 0
0 0 0
0 0 0
0 0 0


a = −2t, b = t, t ∈ R

3. Write the vector (22,−13,−1) as a linear combination of v1 = (1, 0, 0), v2 = (0, 1, 2),
v3 = (5,−3,−1). Use any method and show all your work.



Solution:

a

 1
0
0

+ b

 0
1
2

+ c

 5
−3
−1

 =

 22
−13
−1


 a

0
0

+

 0
b
2b

+

 5c
−3c
−c

 =

 22
−13
−1


 a+ 5c

b− 3c
2b− c

 =

 22
−13
−1


a+ 5c = 22, b− 3c = −13, 2b− c = −1.

 1 0 5 22
0 1 −3 −13
0 2 −1 −1


R3 ← R3 − 2R2 1 0 5 22
0 1 −3 −13
0 0 5 25



R3 ←
1

5
R3 1 0 5 22

0 1 −3 −13
0 0 1 5


R1 ← R1 − 5R3

R2 ← R2 + 3R3

 1 0 0 −3
0 1 0 2
0 0 1 5


a = −3

b = 2

c = 5

4. Consider the following augmented matrix for a linear system of equations: 1 0 0 0
0 1 0 0
0 0 a2 − 4 a− 2


Find all values for a that will result in this system having infinitely many solutions.
Justify your answer.

Solution: To have infinitely many solutions, the last row must be a zero row, forcing
a2 − 4 = a− 2 = 0. The only value for a that makes this true is a = 2.

5. What can be said about the number of solutions to a system of equations given that the
RREF of the coefficient matrix contains a zero row? Explain and justify your answer as
appropriate.

Solution: Nothing. The number of solutions is completely unknown. For instance,
consider the system

x+ y = 4, x− y = 0, 2x+ 2y = 8.



The RREF of the coefficient matrix

 1 1
1 −1
2 2

 has a zero row, but there is exactly

one solution. Similarly, the system

x+ y = 4, x− y = 0, x+ y = 2

is such that the RREF of the coefficient matrix has a zero row, but there are no
solutions (how can x+ y = 4 and 2 at the same time). Finally,

x+ y = 4, 2x+ 2y = 8

has coefficient matrix

[
1 1
2 2

]
, and it’s RREF has a zero row, which produces in-

finitely many solutions. The size could be anything, the number of solutions could
be anything. Really, the most you can say is that one of the rows of the coefficient
matrix was a linear combination of the other rows, but this is something about the
coefficient matrix, not really about the system itself.

6. Prove using mathematical induction that for any n ≥ 2, and collection of n m × m
matrices A1, A2, . . . , An,

det(A1A2 · · ·An) = det(A1) det(A2) · · · det(An).

Solution: Fix m ≥ 1. For all n ≥ 2, let Pn denote the statement that for any
collection of n m×m matrices A1, A2, . . . , An,

det(A1A2 · · ·An) = det(A1) det(A2) · · · det(An).

Base Case. The statement P2 says that for any collection of 2 m×m matrices A,B,

det(AB) = det(A) det(B).

This is true by Theorem 7.6 in the text.

Inductive Step. Fix k ≥ 2 and suppose that Pk holds, that is, for any collection of k
m×m matrices A1, A2, . . . , Ak,

det(A1A2 · · ·Ak) = det(A1) det(A2) · · · det(Ak).

It remains to show that Pk+1 holds, that is, for any collection of k+1 m×m matrices
A1, A2, . . . , Ak+1,

det(A1A2 · · ·Ak+1) = det(A1) det(A2) · · · det(Ak+1).

Let A1, A2, . . . , Ak+1 be m×m matrices. Then

det(A1A2 · · ·Ak+1) = det( (A1A2 · · ·Ak) Ak+1 )

= det(A1A2 · · ·Ak) det(Ak+1) (base case)

= det(A1) det(A2) · · · det(Ak) det(Ak+1) (by Pk).

Therefore Pk+1 holds. Thus by PMI, for all n ≥ 2, Pn holds.



7. Is it true that for any two matrices A and B,

det(A+B) = det(A) + det(B)?

If so, prove it. If not, find a counter example.

Solution: No. For instance,∣∣∣∣ 1 0
0 0

∣∣∣∣ = 0,

∣∣∣∣ 0 0
0 1

∣∣∣∣ = 0,

but ∣∣∣∣[ 1 0
0 0

]
+

[
0 0
0 1

]∣∣∣∣ = ∣∣∣∣ 1 0
0 1

∣∣∣∣ = 1 ̸=
∣∣∣∣ 1 0
0 0

∣∣∣∣+ ∣∣∣∣ 0 0
0 1

∣∣∣∣ .
8. Solve the following system using Cramer’s Rule:

x1 + 3x3 = −1
− x2 + 2x3 = −9

2x1 + x2 = 15

Solution:  1 0 3
0 −1 2
2 1 0

 x1

x2

x3

 =

 −1−9
15



A =

 1 0 3
0 −1 2
2 1 0

 , A1 =

 −1 0 3
−9 −1 2
15 1 0


A2 =

 1 −1 3
0 −9 2
2 15 0

 , A3 =

 1 0 −1
0 −1 −9
2 1 15


Then |A| = 4, |A1| = 20, |A2| = 20, and |A3| = −8. Therefore, by Cramer’s rule:

x1 =
|A1|
|A|

=
20

4
= 5

x2 =
|A2|
|A|

=
20

4
= 5

x3 =
|A3|
|A|

=
−8
4

= −2.

9. Prove the following property: for all a, b, c ∈ R, a ̸= 0, b ̸= 0, c ̸= 0,∣∣∣∣∣∣
1 + a 1 1
1 1 + b 1
1 1 1 + c

∣∣∣∣∣∣ = abc

(
1 +

1

a
+

1

b
+

1

c

)
.



Solution:∣∣∣∣∣∣
1 + a 1 1
1 1 + b 1
1 1 1 + c

∣∣∣∣∣∣R2 ← R2 −R1

=

∣∣∣∣∣∣
1 + a 1 1
−a b 0
1 1 1 + c

∣∣∣∣∣∣R3 ← R3 − (1 + c)R1

=

∣∣∣∣∣∣
1 + a 1 1
−a b 0

1− (1 + a)(1 + c) −c 0

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 + a 1 1
−a b 0

−a− c− ac −c 0

∣∣∣∣∣∣
=

∣∣∣∣ −a b
−a− c− ac −c

∣∣∣∣
= ac− b(−a− c− ac) = ac+ ba+ bc+ abc = abc

(
1 +

1

a
+

1

b
+

1

c

)
.

10. (a) Let c ∈ R. Prove using mathematical induction that for any n ≥ 1 and any n× n
matrix A, |cA| = cn|A|.

Solution: Fix c ∈ R. For all n ≥ 1, let Pn denote the statement that for any
n× n matrix A, |cA| = cn|A|.
Base Case. The statement P1 says that for any 1× 1 matrix A = [a1,1], |cA| =
c|A|.

|cA| = |[ca1,1]| = ca1,1 = c|[a1,1]| = c|A|.

Therefore P1 holds.

Inductive Step. Fix k ≥ 1 and assume that Pk holds, that is, for any k × k

matrix A, |cA| = ck|A|. It remains to show that Pk+1 holds, that is, for any
(k + 1)× (k + 1) matrix A, |cA| = ck+1|A|.
First some notation: let Ai,j denote the matrix formed from A by removing row
i and column j. Then expanding across the first row we have:

|cA| =
k+1∑
j=1

ca1,jC1,j Recall Ci, j is the cofactor at i, j

=
k+1∑
j=1

ca1,j(−1)1+j|(cA)1,j|

=
k+1∑
j=1

ca1,j(−1)1+jck|A1,j| By Pk since (cA)1,j is a k × k matrix



= ck+1

k+1∑
j=1

a1,j(−1)1+j|A1,j|

= ck+1|A|.

Therefore Pk+1 holds, and thus by PMI, for all n ≥ 1, Pn holds.

(b) A square matrix is called skew-symmetric if AT = −A. Use part (a) and a prop-
erty of determinants when taking transposes to show that every skew-symmetric
1001× 1001 matrix has determinant 0.

Solution: Let A be a skew-symmetric matrix. Then AT = −A. Taking the
determinant of both sides, we get

|AT | = |A|
| − A| = |(−1)A|

= (−1)1001|A|
= −|A|.

Thus |A| = −|A|, and so 2|A| = 0, thus |A| = 0.

11. Find the inverse of the matrix or explain why the inverse does not exist.

(a) A =

1 2 3
2 5 3
1 0 8


Solution: Compute det(A) by expanding along the bottom row:

det(A) =

∣∣∣∣2 3
5 3

∣∣∣∣+ 8

∣∣∣∣1 2
2 5

∣∣∣∣ = 6− 15 + 40− 32 = −1,

so A is invertible. We compute the inverse using the adjoint. The matrix of
cofactors is

C =

 40 −13 −5
−16 5 2
−9 3 1

 ,

so

A−1 =
1

det(A)
CT =

−40 16 9
13 −5 −3
5 −2 −1

 .

(b) B =

−1 3 −4
2 4 1
−4 2 −9





Solution: We have

det(B) =

∣∣∣∣∣∣
−1 3 −4
2 4 1
−4 2 −9

∣∣∣∣∣∣ R2←R2+2R1=
R3←R3−4R1

∣∣∣∣∣∣
−1 3 −4
0 10 −7
0 −10 7

∣∣∣∣∣∣
and thus det(B) = 0 since the third row is a multiple of the second (and thus
adding, for instance, row 2 to row 3, would lead to a row of zeros). So B is not
invertible.

12. Find all values of c, if any, for which the matrix A =

c 1 0
1 c 1
0 1 c

 is invertible.

Solution: A is invertible iff its determinant is nonzero. Expanding along, say, the
first row, we find

det(A) = c

∣∣∣∣c 1
1 c

∣∣∣∣− ∣∣∣∣1 1
0 c

∣∣∣∣ = c(c2 − 1)− c = c(c2 − 2).

Therefore, A is invertible iff c ̸= 0 and c2 − 2 ̸= 0, i.e., c ̸= 0, c ̸=
√
2 and c ̸= −

√
2.

13. Show that if A is invertible, then det(A−1) = det(A)−1. Deduce a formula for the
determinant of 4A−1, when A is an invertible n× n-matrix.

Solution: If A is invertible, then A−1 exists such that AA−1 = I. Take the deter-
minant of both sides and use the fact that det(AB) = det(A) det(B):

det(AA−1) = det(I)⇔ det(A) det(A−1) = det(I)⇔ det(A) det(A−1) = 1

and thus, dividing both sides of the latter equality by det(A),

det(A−1) = det(A)−1.

Recall that if all entries in a row of A are multiplied by some constant k, then the
determinant of A is multiplied by k. So, if A is n×n, if all entries of A are multiplied
by k, then the determinant of A is multiplied by kn. Therefore,

det(4A−1) = 4n det(A−1) =
4n

det(A)
.

14. Writing the system
x1 +x3 = 4
2x1 +3x2 +5x3 = −3
x1 +2x3 = 0

as Ax = b,



(a) find the inverse matrix A−1;

Solution: The matrix takes the form

A =

1 0 1
2 3 5
1 0 2

 .

We compute the determinant by expanding along the second column:

det(A) = 3

∣∣∣∣1 1
1 2

∣∣∣∣ = 3,

so the matrix A is invertible. We invert it, for example, by row reduction. We
have

[A|I] =

 1 0 1 1 0 0
2 3 5 0 1 0
1 0 2 0 0 1

 R2←R2−2R1→
R3←R3−R1

 1 0 1 1 0 0
0 3 3 −2 1 0
0 0 1 −1 0 1


R1←R1−R3→
R2←R2−3R1

 1 0 0 2 0 −1
0 3 0 1 1 −3
0 0 1 −1 0 1

 R2←R2/3→

 1 0 0 2 0 −1
0 1 0 1

3
1
3
−1

0 0 1 −1 0 1

 = [I|A−1].

(b) find the solution to the system ATx = b by using (a).

Solution: Since det(A) = det(AT ), the system ATx = b has the unique so-
lution x = (AT )−1b. Recall that (AT )−1 = (A−1)T . [Indeed, suppose A is
invertible. Then AT (A−1)T = (A−1A)T = IT = I, thus the inverse of AT is
(A−1)T .]

Thus

x = (AT )−1b = (A−1)Tb =


2 1

3
−1

0 1
3

0

−1 −1 1


 4
−3
0

 =

 7
−1
−1

 .


