The University of Manitoba

MATH 1210: Techniques of Classical and Linear Algebra (Winter Term 2018)

Final Examination April 18, 2018

(I acknowledge that cheating is a serious offense.)

Place a check mark (\checkmark) in the box corresponding to your section and instructor.

- □ Jaydeep Chipalkatti M-W-F at 1:30pm in 205 Armes
- $\hfill\square$ Tyrone Ghaswala M-W-F at 9:30am in EITC E2 110
- \Box Sergei Tsaturian M-W-F at 9:30am in 100 St. Paul's

Instructions:

Please ensure that your paper has a total of 7 pages (including this page). Read the questions thoroughly and carefully before attempting them. You must **show your work** clearly in order to get any marks for your answers.

You are **not allowed** to use any of the following: calculators, notes, books, dictionaries or electronic communication devices (e.g., cell-phones or pagers).

You may use the back pages for continuing your work, but please indicate this clearly.

	Obtained	Maximum
Page 2		14
Page 3		13
Page 4		14
Page 5		12
Page 6		14
Page 7		13
Total		80

$$\sum_{m=-1}^{8} (m+4)^2.$$

You may use the formulae

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \text{ and } \sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}.$$

Q2. It is given that 2 - i is a root of the polynomial $f(x) = x^3 - x^2 - 7x + 15$. Find the other two roots. [7]

$$\mathbf{u} = \langle 4, 1, 1 \rangle, \quad \mathbf{v} = \langle 3, a, -1 \rangle, \text{ and } \mathbf{w} = \langle -2, 1, 7 \rangle.$$

If $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = 0$, find the value of a.

Q4. Let P be the plane in \mathbb{R}^3 defined by the equation 3x - 5y - 2z = 8, and let L be the line with symmetric equations [6]

$$\frac{x-3}{4} = \frac{y-6}{2} = \frac{z+5}{1}.$$

Which of the following statements is true?

- (1) L is entirely contained in P.
- (2) L does not intersect P.
- (3) L intersects P in a single point.

You must give adequate justification for your answer.

Q5. Solve the following system of equations by any method of your choice.

x + y + z = -3, -2x - y + z = 6, y + 2z = 1.

Q6. Find all pairs of numbers (p, q) such that the matrix

$$\begin{bmatrix} 3p+2q & q-2 & 1 \\ 0 & p+q-1 & 0 \end{bmatrix}$$

is in reduced row-echelon form (RREF). Only the final answers will be marked, and not the work leading to them.

Answers: _____

[6]

$$x + y + z = 2$$
, $5x - y - 3z = -4$, $2x - y - z = 1$

Find the value of y using Cramer's rule. No credit will be given for any other method.

.

6

Q9. Consider the matrix

$$A = \left[\begin{array}{rrr} 2 & 0 & -1 \\ 3 & 1 & 0 \\ -1 & 0 & 1 \end{array} \right].$$

- (1) Use any method of your choice to find A^{-1} .
- (2) Verify that $A A^{-1} = I_3$.

- Q10. Consider the linear transformation $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ given by the formula [2+4] $T(\langle v_1, v_2 \rangle) = \langle 6 v_1 - 4 v_2, -3 v_1 + 2 v_2 \rangle.$
 - (1) Find $T(\langle -3,7\rangle)$.
 - (2) Find all vectors v (if any) such that $T(v) = \langle 2, 1 \rangle$.

Q11. Consider the vectors $% \left({{{\rm{A}}_{{\rm{A}}}} \right)$

$$\mathbf{u} = \langle 2, -1, 1 \rangle, \quad \mathbf{v} = \langle 5, 0, -1 \rangle, \quad \mathbf{w} = \langle -5, -5, 8 \rangle.$$

in \mathbb{R}^3 . Show that the set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent, and express \mathbf{w} as a linear combination of \mathbf{u} and \mathbf{v} .

Q12. Suppose that A is a symmetric 3×3 matrix with eigenvalues 4, 6, and -7. Further suppose that $\langle 1, 2, -1 \rangle$ is an eigenvector with eigenvalue 4, and $\langle -1, 2, 3 \rangle$ is an eigenvector with eigenvalue 6. Write down an eigenvector with eigenvalue -7. You must give adequate justification for your answer. [6]