The University of Manitoba

MATH 1210: Techniques of Classical and Linear Algebra (Winter Term 2018)

Final Examination

April 18, 2018
Time: 2 hours
Total Marks: 80

Last Name (IN CAPITAL LETTERS): \qquad

First Name (IN CAPITAL LETTERS): \qquad

Student Number: \qquad

Signature: \qquad
(I acknowledge that cheating is a serious offense.)

Place a check mark (\checkmark) in the box corresponding to your section and instructor.

```
\square Jaydeep Chipalkatti
T Tyrone Ghaswala
M-W-F at 1:30pm in 205 Armes
\(\square \quad\) Tyrone Ghaswala
M-W-F at 9:30am in EITC E2 110
\(\square \quad\) Sergei Tsaturian
M-W-F at 9:30am in 100 St. Paul's
```


Instructions:

Please ensure that your paper has a total of 7 pages (including this page). Read the questions thoroughly and carefully before attempting them. You must show your work clearly in order to get any marks for your answers.

You are not allowed to use any of the following: calculators, notes, books, dictionaries or electronic communication devices (e.g., cell-phones or pagers).

You may use the back pages for continuing your work, but please indicate this clearly.

	Obtained	Maximum
Page 2		14
Page 3		13
Page 4		14
Page 5		12
Page 6		13
Page 7		80
Total		

Q1. Find the sum

$$
\sum_{m=-1}^{8}(m+4)^{2}
$$

You may use the formulae

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}, \quad \text { and } \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Q2. It is given that $2-i$ is a root of the polynomial $f(x)=x^{3}-x^{2}-7 x+15$. Find the other two roots.

Q3. Consider the vectors

$$
\mathbf{u}=\langle 4,1,1\rangle, \quad \mathbf{v}=\langle 3, a,-1\rangle, \quad \text { and } \quad \mathbf{w}=\langle-2,1,7\rangle .
$$

If $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=0$, find the value of a.

Q4. Let P be the plane in \mathbb{R}^{3} defined by the equation $3 x-5 y-2 z=8$, and let L be the line with symmetric equations

$$
\frac{x-3}{4}=\frac{y-6}{2}=\frac{z+5}{1}
$$

Which of the following statements is true?
(1) L is entirely contained in P.
(2) L does not intersect P.
(3) L intersects P in a single point.

You must give adequate justification for your answer.

Q5. Solve the following system of equations by any method of your choice.

$$
x+y+z=-3, \quad-2 x-y+z=6, \quad y+2 z=1
$$

Q6. Find all pairs of numbers (p, q) such that the matrix

$$
\left[\begin{array}{ccc}
3 p+2 q & q-2 & 1 \\
0 & p+q-1 & 0
\end{array}\right]
$$

is in reduced row-echelon form (RREF). Only the final answers will be marked, and not the work leading to them.

Answers:

Q7. Consider the system of equations

$$
x+y+z=2, \quad 5 x-y-3 z=-4, \quad 2 x-y-z=1 .
$$

Find the value of y using Cramer's rule. No credit will be given for any other method.

Q8. Let $A=\left[\begin{array}{rrr}3 & -5 & a \\ 2 & 0 & 1 \\ 2 & -3 & 7\end{array}\right]$. It is given that $\left[\begin{array}{r}1 \\ 0 \\ -2\end{array}\right]$ is an eigenvector for $A . \quad[2+4]$
(1) What is the corresponding eigenvalue?
(2) What is the value of a ?

Q9. Consider the matrix

$$
A=\left[\begin{array}{rrr}
2 & 0 & -1 \\
3 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

(1) Use any method of your choice to find A^{-1}.
(2) Verify that $A A^{-1}=I_{3}$.

Q10. Consider the linear transformation $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ given by the formula

$$
T\left(\left\langle v_{1}, v_{2}\right\rangle\right)=\left\langle 6 v_{1}-4 v_{2},-3 v_{1}+2 v_{2}\right\rangle .
$$

(1) Find $T(\langle-3,7\rangle)$.
(2) Find all vectors v (if any) such that $T(v)=\langle 2,1\rangle$.

Q11. Consider the vectors

$$
\mathbf{u}=\langle 2,-1,1\rangle, \quad \mathbf{v}=\langle 5,0,-1\rangle, \quad \mathbf{w}=\langle-5,-5,8\rangle .
$$

in \mathbb{R}^{3}. Show that the set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent, and express \mathbf{w} as a linear combination of \mathbf{u} and \mathbf{v}.

Q12. Suppose that A is a symmetric 3×3 matrix with eigenvalues 4,6 , and -7 . Further suppose that $\langle 1,2,-1\rangle$ is an eigenvector with eigenvalue 4 , and $\langle-1,2,3\rangle$ is an eigenvector with eigenvalue 6 . Write down an eigenvector with eigenvalue -7 . You must give adequate justification for your answer.

