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Q1. Find the sum [7]

8∑
m=−1

(m + 4)2.

You may use the formulae
n∑

i=1

i =
n (n + 1)

2
, and

n∑
i=1

i2 =
n (n + 1) (2n + 1)

6
.

Q2. It is given that 2− i is a root of the polynomial f(x) = x3 − x2 − 7x + 15. Find the

other two roots. [7]



3

Q3. Consider the vectors [7]

u = 〈4, 1, 1〉, v = 〈3, a,−1〉, and w = 〈−2, 1, 7〉.

If u · (v ×w) = 0, find the value of a.

Q4. Let P be the plane in R3 defined by the equation 3x− 5y− 2z = 8, and let L be the

line with symmetric equations [6]

x− 3

4
=

y − 6

2
=

z + 5

1
.

Which of the following statements is true?

(1) L is entirely contained in P .

(2) L does not intersect P .

(3) L intersects P in a single point.

You must give adequate justification for your answer.
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Q5. Solve the following system of equations by any method of your choice. [8]

x + y + z = −3, −2x− y + z = 6, y + 2z = 1.

Q6. Find all pairs of numbers (p, q) such that the matrix [6][
3p + 2q q − 2 1

0 p + q − 1 0

]
is in reduced row-echelon form (RREF). Only the final answers will be marked, and not

the work leading to them.

Answers:
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Q7. Consider the system of equations [6]

x + y + z = 2, 5x− y − 3z = −4, 2x− y − z = 1.

Find the value of y using Cramer’s rule. No credit will be given for any other method.

Q8. Let A =

 3 −5 a

2 0 1

2 −3 7

. It is given that

 1

0

−2

 is an eigenvector for A. [2+4]

(1) What is the corresponding eigenvalue?

(2) What is the value of a?
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Q9. Consider the matrix [6+2]

A =

 2 0 −1

3 1 0

−1 0 1

 .

(1) Use any method of your choice to find A−1.

(2) Verify that AA−1 = I3.

Q10. Consider the linear transformation T : R2 −→ R2 given by the formula [2+4]

T (〈v1, v2〉) = 〈6 v1 − 4 v2,−3 v1 + 2 v2〉.

(1) Find T (〈−3, 7〉).
(2) Find all vectors v (if any) such that T (v) = 〈2, 1〉.
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Q11. Consider the vectors [7]

u = 〈2,−1, 1〉, v = 〈5, 0,−1〉, w = 〈−5,−5, 8〉.

in R3. Show that the set {u,v,w} is linearly dependent, and express w as a linear

combination of u and v.

Q12. Suppose that A is a symmetric 3× 3 matrix with eigenvalues 4, 6, and −7. Further

suppose that 〈1, 2,−1〉 is an eigenvector with eigenvalue 4, and 〈−1, 2, 3〉 is an eigenvector

with eigenvalue 6. Write down an eigenvector with eigenvalue −7. You must give adequate

justification for your answer. [6]


