The University of Manitoba

MATH 1210: Techniques of Classical and Linear Algebra (Winter Term 2018)

Midterm Examination
February 28th, 2018
Time: 75 minutes
Total Marks: 50

Last Name (IN CAPITAL LETTERS): \qquad

First Name (IN CAPITAL LETTERS): \qquad

Student Number: \qquad

Signature: \qquad
(I acknowledge that cheating is a serious offense.)

Place a check mark (\checkmark) in the box corresponding to your section and instructor.
$\square \quad$ Jaydeep Chipalkatti
$\square \quad$ Tyrone Ghaswala
M-W-F at 1:30pm in 205 Armes
$\square \quad$ Sergei Tsaturian
M-W-F at 9:30am in EITC E2 110
M-W-F at 9:30am in 100 St. Paul's

Instructions:

Please ensure that your paper has a total of 5 pages (including this page). Read the questions thoroughly and carefully before attempting them. You must show your work clearly in order to get any marks for your answers

You are not allowed to use any of the following: calculators, notes, books, dictionaries or electronic communication devices (e.g., cell-phones or pagers).

You may use the back pages for scratch work. However, it will not be marked.

	Obtained	Maximum
Q1		7
Q2		7
Q3		6
Q4		6
Q5		6
Q6		6
Q7		6
Q8		50
Total		

Q1. Use the principle of mathematical induction to prove the identity

$$
2+7+12+17+\cdots+(5 n-3)=\frac{n(5 n-1)}{2}
$$

for $n \geqslant 1$.

Q2. Express the complex number $\left(\overline{2 e^{i \pi / 3}}\right)^{4}$ in Cartesian form.

Q3. Find all solutions to the equation

$$
z^{3}=1+i .
$$

Express your solutions in exponential form.

Q4. Consider the polynomial

$$
f(x)=x^{3}+4 x^{2}+k x+3 .
$$

It is given that if you divide $f(x)$ by $x+3$, then the remainder is $k+1$. Find the value of k.

Q5. Consider the polynomial

$$
g(x)=x^{3}-t x^{2}-1
$$

where t is an integer. Find all values of t for which $g(x)$ has a rational root.

Q6. Let

$$
A=\left[\begin{array}{rr}
-1 & 2 \\
4 & 5 \\
1 & 0
\end{array}\right], \quad B=\left[\begin{array}{rr}
3 & -1 \\
0 & -7 \\
5 & 2
\end{array}\right]
$$

Find the matrix $A^{T} B-I_{2}$.

Q7. Let P be the plane in \mathbb{R}^{3} defined by the equation $x+2 y-z=3$. Find the parametric equations of the line perpendicular to P which passes through the point $(3,0,3)$. [6]

Q8. Consider the vectors $\mathbf{u}=\langle 1,-1,2\rangle$, and $\mathbf{v}=\langle 3,1,-7\rangle$ in \mathbb{R}^{3}. Find a vector \mathbf{w}, other than the zero vector, such that

$$
\mathbf{u} \cdot \mathbf{w}=0, \quad \text { and } \quad \mathbf{v} \cdot \mathbf{w}=0
$$

