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Q1. Use the principle of mathematical induction to prove the identity [7]

2 + 7 + 12 + 17 + · · ·+ (5n− 3) =
n (5n− 1)

2
,

for n > 1.

Q2. Express the complex number (2 ei π/3)4 in Cartesian form. [7]
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Q3. Find all solutions to the equation [6]

z3 = 1 + i.

Express your solutions in exponential form.

Q4. Consider the polynomial [6]

f(x) = x3 + 4x2 + kx + 3.

It is given that if you divide f(x) by x + 3, then the remainder is k + 1. Find the value

of k.
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Q5. Consider the polynomial [6]

g(x) = x3 − t x2 − 1,

where t is an integer. Find all values of t for which g(x) has a rational root.

Q6. Let [6]

A =

 −1 2

4 5

1 0

 , B =

 3 −1

0 −7

5 2

 .

Find the matrix AT B − I2.
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Q7. Let P be the plane in R3 defined by the equation x+2y−z = 3. Find the parametric

equations of the line perpendicular to P which passes through the point (3, 0, 3). [6]

Q8. Consider the vectors u = 〈1,−1, 2〉, and v = 〈3, 1,−7〉 in R3. Find a vector w, other

than the zero vector, such that [6]

u ·w = 0, and v ·w = 0.


