MATH 1210 (Winter Term 2018)

Solutions to the Midterm

Q1. Use the principle of mathematical induction to prove the identity

$$
2+7+12+17+\cdots+(5 n-3)=\frac{n(5 n-1)}{2}
$$

for $n \geqslant 1$.

Solution: First, assume $n=1$. Then the LHS (left-hand-side) is 2, and the RHS is $\frac{1 .(5 \times 1-1)}{2}=2$. Hence the identity is true for $n=1$.
Assume it to be true for $n=k$, i.e.,

$$
2+7+12+17+\cdots+(5 k-3)=\frac{k(5 k-1)}{2}
$$

Now add $5(k+1)-3=5 k+2$ to both sides. Then

$$
\begin{aligned}
& 2+7+12+17+\cdots+(5 k-3)+(5 k+2) \\
= & \frac{k(5 k-1)}{2}+(5 k+2)=\frac{5 k^{2}-k+10 k+4}{2}=\frac{5 k^{2}+9 k+4}{2} \\
= & \frac{(k+1)(5 k+4)}{2}=\frac{(k+1)(5(k+1)-1)}{2},
\end{aligned}
$$

which proves the identity for $n=k+1$. Hence the identity is proved for all $n \geqslant 1$ by the principle of mathematical induction.

Q2. Express the complex number $\left(\overline{2 e^{i \pi / 3}}\right)^{4}$ in Cartesian form.
Solution: Let $z=2 e^{i \pi / 3}$. Then $\bar{z}=2 e^{-i \pi / 3}$, and
$(\bar{z})^{4}=2^{4} e^{-4 i \pi / 3}=16[\cos (-4 \pi / 3)+i \sin (-4 \pi / 3)]=16(-1 / 2+i \sqrt{3} / 2)=-8+i 8 \sqrt{3}$, which is the required Cartesian form.

Q3. Find all solutions to the equation

$$
z^{3}=1+i
$$

Express your solutions in exponential form.
Solution: Recall that $w=1+i$ has three distinct cube-roots. It would be useful to express w in exponential form. It is immediate that $\arg (w)=\pi / 4$, and $|w|=\sqrt{2}$, so we may write

$$
w=\sqrt{2} e^{i(\pi / 4+2 k \pi)},
$$

where k is an arbitrary integer. Since $z^{3}=w$, we have

$$
z=w^{1 / 3}=\sqrt[6]{2} e^{i \frac{(\pi / 4+2 k \pi)}{3}}=\sqrt[6]{2} e^{i(\pi / 12+2 k \pi / 3)} .
$$

Taking $k=0,1,2$, we get the three solutions:

$$
z=\sqrt[6]{2} e^{i \pi / 12}, \quad \sqrt[6]{2} e^{9 i \pi / 12}, \quad \sqrt[6]{2} e^{17 i \pi / 12}
$$

Q4. Consider the polynomial

$$
f(x)=x^{3}+4 x^{2}+k x+3
$$

It is given that if you divide $f(x)$ by $x+3$, then the remainder is $k+1$. Find the value of k.

Solution: By the remainder theorem, we have $f(-3)=k+1$. After expansion, we get

$$
(-3)^{3}+4(-3)^{2}+(-3) k+3=-27+36-3 k+3=12-3 k=k+1,
$$

i.e., $11=4 k$, and hence

$$
k=\frac{11}{4} .
$$

Q5. Consider the polynomial

$$
g(x)=x^{3}-t x^{2}-1,
$$

where t is an integer. Find all values of t for which $g(x)$ has a rational root.

Solution: Let p / q be a possible rational root. By the Rational Roots Theorem, p must divide -1 , i.e., $p= \pm 1$. Moreover, q must divide 1, i.e., $q= \pm 1$. Hence the rational root must be ± 1.
If $g(1)=0$, then $1-t-1=0 \Longrightarrow t=0$. If $g(-1)=0$, then $-1-t-1=0 \Longrightarrow t=-2$. This implies that

$$
t=0,-2
$$

are the values.

Q6. Let

$$
A=\left[\begin{array}{rr}
-1 & 2 \\
4 & 5 \\
1 & 0
\end{array}\right], \quad B=\left[\begin{array}{rr}
3 & -1 \\
0 & -7 \\
5 & 2
\end{array}\right] .
$$

Find the matrix $A^{T} B-I_{2}$.
Solution: We have

$$
A^{T} B=\left[\begin{array}{rrr}
-1 & 4 & 1 \\
2 & 5 & 0
\end{array}\right]\left[\begin{array}{rr}
3 & -1 \\
0 & -7 \\
5 & 2
\end{array}\right]=\left[\begin{array}{ll}
2 & -25 \\
6 & -37
\end{array}\right]
$$

Hence

$$
A^{T} B-I_{2}=\left[\begin{array}{ll}
2 & -25 \\
6 & -37
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & -25 \\
6 & -38
\end{array}\right] .
$$

Q7. Let P be the plane in \mathbb{R}^{3} defined by the equation $x+2 y-z=3$. Find the parametric equations of the line perpendicular to P which passes through the point $(3,0,3)$.

Solution: The vector $n=\langle 1,2,-1\rangle$ is normal to the plane, and we are told that it is a direction vector for the line. Hence the symmetric equations of the line are

$$
\frac{x-3}{1}=\frac{y-0}{2}=\frac{z-3}{-1}=t,
$$

for some parameter t. Hence the parametric equations are

$$
x=t+3, \quad y=2 t, \quad z=-t+3 .
$$

Q8. Consider the vectors $\mathbf{u}=\langle 1,-1,2\rangle$, and $\mathbf{v}=\langle 3,1,-7\rangle$ in \mathbb{R}^{3}. Find a vector \mathbf{w}, other than the zero vector, such that

$$
\mathbf{u} \cdot \mathbf{w}=0, \quad \text { and } \quad \mathbf{v} \cdot \mathbf{w}=0 .
$$

Solution: By construction, the vector $\mathbf{w}=\mathbf{u} \times \mathbf{v}$ is orthogonal to \mathbf{u} and \mathbf{v}, and thus has the required property. Hence

$$
\mathbf{w}=\left|\begin{array}{rrr}
i & j & k \\
1 & -1 & 2 \\
3 & 1 & -7
\end{array}\right|=\langle 5,13,4\rangle
$$

is a solution. Any nonzero multiple of this vector is also a valid solution.

