The University of Manitoba

MATH 1210: Techniques of Classical and Linear Algebra (Winter Term 2018)

Makeup Midterm Solutions

Q1. Use the principle of mathematical induction to prove the identity

$$
3+7+11+\cdots+(4 n-1)=n(2 n+1) \quad \text { for } n \geqslant 1
$$

Proof. When $n=1$ we have that $3=1(2(1)+1)$, so the identity is true when $n=1$. This will be our base case.
Now assume $3+7+\cdots+(4 k-1)=k(2 k+1)$ for some integer $k \geq 1$. Then

$$
\begin{aligned}
3+7+\cdots+(4 k-1)+(4(k+1)-1) & =k(2 k+1)+4 k+3 \\
& =2 k^{2}+2 k+3 k+3 \\
& =(k+1)(2 k+3) \\
& =(k+1)(2(k+1)+1) .
\end{aligned}
$$

Therefore if the identity is true for k, it is true for $k+1$. By the principle of mathematical induction, the identity is true for all integers $n \geq 1$.

Q2. Find all the solutions to the equation

$$
z^{3}=-8 i
$$

Express your solutions in exponential form.
Solution: Converting $-8 i$ to polar form gives the equation $z^{3}=8 e^{i \frac{3 \pi}{2}}$. Finding the three third roots of $8 e^{i \frac{3 \pi}{2}}$ gives us

$$
z=2 e^{i \frac{\pi}{2}}, 2 e^{i \frac{7 \pi}{6}}, 2 e^{i \frac{-\pi}{6}}
$$

as all the solutions

Q3. Let

$$
A=\left[\begin{array}{cc}
3 & 2 \\
-1 & 1
\end{array}\right], \quad B=\left[\begin{array}{cc}
i & -i \\
1 & i
\end{array}\right], \quad C=\left[\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right]
$$

Find the matrix $A B+C^{T}$.
Solution: We have
$A B+C^{T}=\left[\begin{array}{cc}3 & 2 \\ -1 & 1\end{array}\right]\left[\begin{array}{cc}i & -i \\ 1 & i\end{array}\right]+\left[\begin{array}{cc}1 & -2 \\ 2 & 1\end{array}\right]=\left[\begin{array}{cc}3 i+2 & -i \\ 1-i & 2 i\end{array}\right]+\left[\begin{array}{cc}1 & -2 \\ 2 & 1\end{array}\right]=\left[\begin{array}{cc}3 i+3 & -2-i \\ 3-i & 2 i+1\end{array}\right]$.
So $A B+C^{T}=\left[\begin{array}{cc}3 i+3 & -2-i \\ 3-i & 2 i+1\end{array}\right]$.

Q4. Consider the polynomial

$$
f(x)=x^{4}+3 x^{3}+k x^{2}+2 k x+3
$$

It is given that if you divide $f(x)$ by $x+1$, then the remainder is k. Find the value of k. Solution: By the remainder theorem we have

$$
k=f(-1)=1-3+k-2 k+3=1-k
$$

Solving for k in the equation $k=1-k$ gives $k=\frac{1}{2}$.

Q5. Express the complex number $\overline{\left(3 e^{i \pi / 6}\right)^{3}}$ in Cartesian form.
Solution: We have

$$
\overline{\left(3 e^{i \pi / 6}\right)^{3}}=\overline{27 e^{i \pi / 2}}=27 e^{-i \pi / 2}
$$

which in cartesian form is $-27 i$.

Q6. Find the equation of a plane passing through the point $(1,2,1)$ and the line given by the parametric equations

$$
\begin{aligned}
x & =t \\
y & =-1+t \\
z & =-2+t
\end{aligned}
$$

for t a real number.
Solution: We already have a point on the plane, so we need a normal vector. To find it, we will find two vectors parallel to the plane and take their cross product. The direction vector of the line $\mathbf{v}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ is one such vector. Letting $t=0$, we find a point
$Q=(0,-1,-2)$ on the line and therefore on the plane. The vector \mathbf{w} joining the point given $P=(1,2,1)$ and $Q=(0,-1,-2)$ is $\mathbf{w}=\left(\begin{array}{l}1 \\ 3 \\ 3\end{array}\right)$.
Now \mathbf{v} and \mathbf{w} are two vectors parallel to the plane, and their cross product is given by $\mathbf{v} \times \mathbf{w}=\left(\begin{array}{c}0 \\ -2 \\ 2\end{array}\right)$. Therefore we may let $\mathbf{n}=\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right)$ be the normal vector to the plane.
Given a normal vector \mathbf{n} and a point $P=(1,2,1)$ we can find the equation of the plane by

$$
\mathbf{n} \cdot\left(\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)-\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)\right)=\mathbf{0}
$$

Expanding this out gives the equation of the plane as $-y+z=-1$.

Q7. Consider the polynomial

$$
g(x)=x^{3}+t x^{2}+4 x+1,
$$

where t is an integer. Find all values of t for which $g(x)$ has a rational root.
Solution: The rational roots theorem says that all the possible roots of $g(x)$ are 1 and -1 . For $x=1$ to be a root we must have $0=g(1)=1+t+4+1$ so $t=-6$. For $x=-1$ to be a root we must have $0=g(-1)=-1+t-4+1$ so $t=4$. Therefore all the values of t for which $g(x)$ has a rational root are $t=-6,4$.

Q8. Find the angle θ between the vectors $\mathbf{v}=\left(\begin{array}{l}0 \\ 2 \\ 2\end{array}\right)$ and $\mathbf{u}=\left(\begin{array}{c}0 \\ 0 \\ -1\end{array}\right)$. Give you answer with $0 \leq \theta \leq \pi$.
Solution: We know

$$
\begin{equation*}
\cos (\theta)=\frac{\mathbf{v} \cdot \mathbf{u}}{|\mathbf{v}||\mathbf{u}|}=\frac{-2}{\sqrt{8}}=-\frac{1}{\sqrt{2}} \tag{5}
\end{equation*}
$$

The only value of θ such that $\cos (\theta)=-\frac{1}{\sqrt{2}}$ and $0 \leq \theta \leq \pi$ is $\theta=3 \pi / 4$.

