COURSE: MATH 1210
DATE \& TIME: April 15, 2019, 9:00-11:00
Final EXAMINATION
DURATION: 2 hours

I understand that cheating is a serious offence:

Signature (In Ink):

INSTRUCTIONS

I. No texts, notes, or other aids are permitted. There are no calculators, cellphones or electronic translators permitted.
II. This exam has a title page, 23 pages including this cover page and one blank page for rough work. Please check that you have all the pages. You may remove the blank page if you want, but be careful not to loosen the staple.
III. The value of each question is indicated in the lefthand margin beside the statement of the question. The total value of all questions is 100 points.
IV. Answer all questions on the exam paper in the space provided beneath the question. If you need more room, you may continue your work on the reverse side of the page, but CLEARLY INDICATE that your work is continued.
V. Please do not call or e-mail your instructor to inquire about grades. They will be available shortly after they have been marked.
VI. If the QR codes on your exam paper are deliberately defaced, your exam may not be marked.

COURSE: MATH 1210
Final EXAMINATION
DATE \& TIME: April 15, 2019, 9:00-11:00
DURATION: 2 hours

BACK PAGE

UNIVERSITY OF MANITOBA
COURSE: MATH 1210
DATE \& TIME: April 15, 2019, 9:00-11:00
Final EXAMINATION
DURATION: 2 hours
[6] 1. Identities $\sum_{j=1}^{n} j=\frac{1}{2}[n(n+1)]$ and $\sum_{j=1}^{n} j^{2}=\frac{1}{6}[n(n+1)(2 n+1)]$ are given.
Use the identities to evaluate the sum

$$
\sum_{j=5}^{12}(j-3)(2 j-7)
$$

Your answer should be a single integer.

COURSE: MATH 1210
Final EXAMINATION
DATE \& TIME: April 15, 2019, 9:00-11:00
DURATION: 2 hours

BACK PAGE

UNIVERSITY OF MANITOBA
COURSE: MATH 1210
DATE \& TIME: April 15, 2019, 9:00-11:00
Final EXAMINATION
DURATION: 2 hours
2. Let $P(x)=6 x^{4}+x^{3}+5 x^{2}+x-1$.
[3] (a) Prove that $P(i)=0$.
[7] (b) Use part (a) to find all zeros of $P(x)$.

COURSE: MATH 1210
Final EXAMINATION
DATE \& TIME: April 15, 2019, 9:00-11:00
DURATION: 2 hours

BACK PAGE

UNIVERSITY OF MANITOBA
COURSE: MATH 1210
DATE \& TIME: April 15, 2019, 9:00-11:00
Final EXAMINATION
DURATION: 2 hours
3. Let $P(3,5,-2)$ and $Q(2,1,6)$ be two points.
[4] (a) Find a vector of length 5 in the direction of $\overrightarrow{P Q}$.
[4] (b) Find parametric equations of the line that passes through the points P and Q.
[6] (c) Find an equation for the plane that contains the points P and Q and is parallel to the line $x=3+t, y=9+3 t, z=2-7 t$.

COURSE: MATH 1210
Final EXAMINATION
DATE \& TIME: April 15, 2019, 9:00-11:00
DURATION: 2 hours

BACK PAGE

UNIVERSITY OF MANITOBA

COURSE: MATH 1210
DATE \& TIME: April 15, 2019, 9:00-11:00
Final EXAMINATION
DURATION: 2 hours
4. Consider the homogeneous linear system

$$
\begin{aligned}
& x_{1}+2 x_{2}+3 x_{4}=0 \\
& 3 x_{1}+6 x_{2}+2 x_{3}-3 x_{4}=0 \\
&-x_{1}-2 x_{2}+x_{3}-9 x_{4}=0
\end{aligned}
$$

[2] (a) Determine the number of solutions of this system without solving it explicitly. You must give an adequate reason for your answer.
[7] (b) Find all solutions of this system using Gauss-Jordan elimination.
[3] (c) Find all basic solutions of this system.

COURSE: MATH 1210
Final EXAMINATION
DATE \& TIME: April 15, 2019, 9:00-11:00
DURATION: 2 hours

BACK PAGE

UNIVERSITY OF MANITOBA
COURSE: MATH 1210
DATE \& TIME: April 15, 2019, 9:00-11:00
Final EXAMINATION
DURATION: 2 hours
[6] 5. Let a be a nonzero number. Use Cramer's Rule to solve the following system of linear equations for z only. (No marks will be given for any other method.)

$$
\left.\begin{array}{rl}
x+2 y+z & =1 \\
2 a y+(1+a) z & =a \\
a x & +z
\end{array}\right)=-4 .
$$

COURSE: MATH 1210
Final EXAMINATION
DATE \& TIME: April 15, 2019, 9:00-11:00
DURATION: 2 hours

BACK PAGE

UNIVERSITY OF MANITOBA
COURSE: MATH 1210
DATE \& TIME: April 15, 2019, 9:00-11:00
Final EXAMINATION
DURATION: 2 hours
6. Let $\mathbf{u}_{1}=\langle 1,0,0,2\rangle, \mathbf{u}_{2}=\langle 0,1,-2,3\rangle$ and $\mathbf{u}_{3}=\langle-1,4,-8,10\rangle$.
[6] (a) Determine if the vectors $\mathbf{u}_{1}, \mathbf{u}_{2}$ and \mathbf{u}_{3} are linearly dependent or linearly independent.
[8] (b) Find all value(s) of a such that the vector $\mathbf{v}=\langle-1,2,-4, a\rangle$ can be expressed as a linear combination of the vectors $\mathbf{u}_{1}, \mathbf{u}_{2}$ and \mathbf{u}_{3}.

COURSE: MATH 1210
Final EXAMINATION
DATE \& TIME: April 15, 2019, 9:00-11:00
DURATION: 2 hours

BACK PAGE

UNIVERSITY OF MANITOBA
COURSE: MATH 1210
DATE \& TIME: April 15, 2019, 9:00-11:00
Final EXAMINATION
DURATION: 2 hours
7. Let $A=\left(\begin{array}{rrr}-3 & -1 & 3 \\ -1 & 0 & 1 \\ -2 & 0 & 1\end{array}\right)$.
[7] (a) Use the direct method (i.e., elementary row-operations) to find the inverse of the matrix A.
[3] (b) Solve the linear system of equations $\left(A^{-1}\right)^{T}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$.

COURSE: MATH 1210
Final EXAMINATION
DATE \& TIME: April 15, 2019, 9:00-11:00
DURATION: 2 hours

BACK PAGE

UNIVERSITY OF MANITOBA
COURSE: MATH 1210
DATE \& TIME: April 15, 2019, 9:00-11:00
Final EXAMINATION
DURATION: 2 hours
[6] 8. Let $\mathbf{a}=\langle 5,-1,2\rangle$. Define a transformation $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ by the formula

$$
T(\mathbf{v})=\mathbf{v} \times \mathbf{a}
$$

You may assume without proof that T is a linear transformation. Find the matrix associated to T.

COURSE: MATH 1210
Final EXAMINATION
DATE \& TIME: April 15, 2019, 9:00-11:00
DURATION: 2 hours

BACK PAGE

UNIVERSITY OF MANITOBA
COURSE: MATH 1210
DATE \& TIME: April 15, 2019, 9:00-11:00
Final EXAMINATION
DURATION: 2 hours
9. Let $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be the linear transformation given by

$$
\begin{aligned}
v_{1}^{\prime} & =7 v_{1}-v_{2} \\
v_{2}^{\prime} & =3 v_{1}+2 v_{2}
\end{aligned}
$$

and let $\mathbf{u}=\langle 1,1\rangle$.
[2] (a) Find $T(\mathbf{u})$.
[8] (b) Find a vector $\mathbf{v}=\langle a, b\rangle$ such that $T(2 \mathbf{u}-\mathbf{v})=-3 \mathbf{v}$.

COURSE: MATH 1210
Final EXAMINATION
DATE \& TIME: April 15, 2019, 9:00-11:00
DURATION: 2 hours

BACK PAGE

UNIVERSITY OF MANITOBA
COURSE: MATH 1210
DATE \& TIME: April 15, 2019, 9:00-11:00
Final EXAMINATION
DURATION: 2 hours
10. Consider the matrix $B=\left(\begin{array}{rrr}0 & 2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & -2\end{array}\right)$.
[5] (a) Given that -2 is an eigenvalue of the matrix B, find the remaining eigenvalues of B.
[7] (b) Find all the eigenvectors corresponding to the eigenvalue -2 .

COURSE: MATH 1210
Final EXAMINATION
DATE \& TIME: April 15, 2019, 9:00-11:00
DURATION: 2 hours

BACK PAGE

COURSE: MATH 1210
DATE \& TIME: April 15, 2019, 9:00-11:00
Final EXAMINATION
DURATION: 2 hours

BLANK PAGE FOR ROUGH WORK (THIS PAGE WILL NOT BE MARKED.)

