Due date: February 4

Attempt all questions and show all your work. Selected number of questions will be marked.

Attach to Honesty Declaration Form

1. Use mathematical induction on integer n to prove each of the following:
(a) $\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\frac{1}{3 \cdot 4 \cdot 5}+\cdots+\frac{1}{n\left(n^{2}-1\right)}=\frac{(n-1)(n+2)}{4 n(n+1)}$ for $n \geq 2$;
(b) $\quad(10)^{n}+(10)^{2 n}-2$ is divisible by 9 for $n \geq 1$.
2. Identities $\sum_{k=1}^{m} k=\frac{1}{2}[m(m+1)]$ and $\sum_{k=1}^{m} k^{2}=\frac{1}{6}[m(m+1)(2 m+1)]$ are given.
(a) First write the sum $2^{2}+5^{2}+8^{2}+11^{2}+\cdots+(6 n+2)^{2}$ in sigma notation and then use the identities to prove that

$$
2^{2}+5^{2}+8^{2}+11^{2}+\cdots+(6 n+2)^{2}=(2 n+1)\left(12 n^{2}+15 n+4\right)
$$

(b) Use the identities to evaluate the sum $\sum_{j=14}^{25}\left[(5 j-65)^{2}-6\right]$.
3. Express each of the following in simplified Cartesian form.
(a) $\frac{(\sqrt{2}-\sqrt{6} i)^{30}}{(\sqrt{2}+\sqrt{6} i)^{28}}$;
(b) $\frac{1}{2^{1010}}\left(i^{13}(-1+i)^{2020}+(\sqrt{3}+i)^{1010}\right)$.
4. Find the complex number z, in Cartesian form, such that it satisfies the equation

$$
(3-\sqrt{3} i)^{5}+(\overline{\sqrt{3}-3 i})^{5} z=288 \sqrt{3}\left(-\frac{\sqrt{3}}{2}+i\right)
$$

5. Find all solutions of the equation

$$
x^{4}+\frac{1}{16}=0
$$

Express any complex solutions in Cartesian form, simplified as much as possible.

