Due date: February 3

Attempt all questions and show all your work. Attach to Honesty Declaration Form.

- 1. Use mathematical induction on integer n to prove each of the following:
 - (a) $1(4) + 2(5) + 3(6) + \dots + n(n+3) = \frac{1}{3}(n)(n+1)(n+5)$ for $n \ge 1$;
 - (b) $3^{n+1}(n+2)! \ge 2^n(n+3)!$ for $n \ge 0$;
 - (c) $\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)\left(1-\frac{1}{5^2}\right)\cdots\left(1-\frac{1}{(n+1)^2}\right) = \frac{2(n+2)}{3(n+1)}$ for $n \ge 2$;
 - (d) $2^{3n+2} + 3^{6n+1}$ is divisible by 7 for $n \ge 1$.
- 2. Simplify as much as possible using properties of sigma notation.

$$\sum_{n=0}^{1000} (n+1)^6 - \sum_{n=2}^{1000} 2(n+1)^6 + \sum_{n=1}^{999} [(n+2)^6 + 1].$$

- 3. Identities $\sum_{k=1}^{m} k = \frac{1}{2} [m(m+1)]$, $\sum_{k=1}^{m} k^2 = \frac{1}{6} [m(m+1)(2m+1)]$ and $\sum_{k=1}^{m} k^3 = \frac{1}{4} [m^2(m+1)^2]$ are given. Use the identities to evaluate the sum $\sum_{\ell=100}^{110} [(\ell-100)^3 + (\ell-99)^2 4]$.
- 4. Find all solutions of the following equation. Express your answers in polar form.

$$(x^4 + 6x^2 + 9)(x^4 + x^3 + 5x^2 + 4x + 4) = 0.$$

Hint: In the right bracket consider $5x^2$ as $x^2 + 4x^2$ and then solve it by factoring.

- 5. Express each of the following in simplified Cartesian form.
 - (a) $\left(\frac{\sqrt[4]{2}}{2} \frac{\sqrt[4]{18}}{2}i\right)^{10}$; (b) $\frac{1}{81}\left(\frac{1}{2i}\right)^{11}(1-i)^8(-\sqrt{3}-3i)^8$.
- 6. Find all solutions of the equation $2x^5 + \frac{1}{16} = 0$. Express all solutions in polar form, simplified as much as possible.