Attempt all questions and show all your work. Attach to Honesty Declaration Form.

1. Use mathematical induction on integer n to prove each of the following:
(a) $1(4)+2(5)+3(6)+\cdots+n(n+3)=\frac{1}{3}(n)(n+1)(n+5)$ for $n \geq 1$;
(b) $\quad 3^{n+1}(n+2)!\geq 2^{n}(n+3)$! for $n \geq 0$;
(c) $\quad\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right)\left(1-\frac{1}{5^{2}}\right) \cdots\left(1-\frac{1}{(n+1)^{2}}\right)=\frac{2(n+2)}{3(n+1)}$ for $n \geq 2$;
(d) $\quad 2^{3 n+2}+3^{6 n+1}$ is divisible by 7 for $n \geq 1$.
2. Simplify as much as possible using properties of sigma notation.

$$
\sum_{n=0}^{1000}(n+1)^{6}-\sum_{n=2}^{1000} 2(n+1)^{6}+\sum_{n=1}^{999}\left[(n+2)^{6}+1\right]
$$

3. Identities $\sum_{k=1}^{m} k=\frac{1}{2}[m(m+1)], \quad \sum_{k=1}^{m} k^{2}=\frac{1}{6}[m(m+1)(2 m+1)]$ and $\sum_{k=1}^{m} k^{3}=\frac{1}{4}\left[m^{2}(m+1)^{2}\right]$ are given. Use the identities to evaluate the sum $\sum_{\ell=100}^{110}\left[(\ell-100)^{3}+(\ell-99)^{2}-4\right]$.
4. Find all solutions of the following equation. Express your answers in polar form.

$$
\left(x^{4}+6 x^{2}+9\right)\left(x^{4}+x^{3}+5 x^{2}+4 x+4\right)=0 .
$$

Hint: In the right bracket consider $5 x^{2}$ as $x^{2}+4 x^{2}$ and then solve it by factoring.
5. Express each of the following in simplified Cartesian form.
(a) $\left(\frac{\sqrt[4]{2}}{2}-\frac{\sqrt[4]{18}}{2} i\right)^{10}$;
(b) $\frac{1}{81}\left(\frac{1}{2 i}\right)^{11}(1-i)^{8}(-\sqrt{3}-3 i)^{8}$.
6. Find all solutions of the equation $2 x^{5}+\frac{1}{16}=0$. Express all solutions in polar form, simplified as much as possible.

