MATH 1210 Assignment 3, Winter 2020 Due date : March 23rd Attempt all questions and show all your work. Attach to Honesty Declaration Form.

1. Consider the system

$$a+b-2c-d=0$$
, $b-d=2$, $4a+2b-9c+d=1$, $2b+d=-2$

- (a) Solve the system using Gauss-Jordan Elimination.
- (b) Use Cramer's Rule to solve for a and d only.
- 2. Let a_0, a_1 , and a_2 be real numbers and let $p(x) = a_0 + a_1x + a_2x^2$. Suppose

$$p(1) = -1, \quad p(2) = 0, \quad p(3) = 2.$$

What are the values of a_0, a_1 , and a_2 ?

(**Hint** : Write out what the above 3 equations say about the coefficients a_0, a_1, a_2 .)

3. Find all values of a and b such that the system

$$ax + 3y + z = 1$$
, $bx + y - z = 0$, $x - y + z = 1$

has exactly one solution.

4. Find the basic solutions of the following homogeneous system:

$$\begin{array}{rclrcrcrcrcrc} x + 2y + z - w + 2v + 4u & = & 0 \\ 2x + y - z + w + v - u & = & 0 \\ x - 2z - 2w + 3u & = & 0 \end{array}$$

5. Use properties of determiants to compute det(F), where

$$F = \begin{bmatrix} 0 & 0 & a & 0 & 0 \\ 0 & b & b & 0 & 0 \\ 0 & 0 & c & c & 0 \\ d & d & d & 0 & 0 \\ 0 & 0 & e & e & e \end{bmatrix}$$

6. Consider the vectors

$$\vec{u}_1 = \langle 1, 3, 2 \rangle, \quad \vec{u}_2 = \langle 1, 1, 1 \rangle, \quad \vec{u}_3 = \langle 0, -1, 2 \rangle, \quad \vec{u}_4 = \langle 1, 1, 6 \rangle, \quad \vec{u}_5 = \langle -3, 1, 1 \rangle.$$

- (a) Without any computation, explain why $\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4$, and \vec{u}_5 are linearly dependent.
- (b) Express \vec{u}_4 as a linear combination of \vec{u}_1, \vec{u}_2 , and \vec{u}_3 .
- (c) Show that \vec{u}_1, \vec{u}_3 , and \vec{u}_5 are linearly independent.
- (d) Prove that any vector $\vec{v} = \langle a, b, c \rangle$ is a linear combination of \vec{u}_1, \vec{u}_3 , and \vec{u}_5 . (**Hint** : Write $\langle a, b, c \rangle = x\vec{u}_1 + y\vec{u}_3 + z\vec{u}_5$ as a linear system. Does it have a solution?)