1. Consider the system

$$
a+b-2 c-d=0, \quad b-d=2, \quad 4 a+2 b-9 c+d=1, \quad 2 b+d=-2
$$

(a) Solve the system using Gauss-Jordan Elimination.
(b) Use Cramer's Rule to solve for a and d only.
2. Let a_{0}, a_{1}, and a_{2} be real numbers and let $p(x)=a_{0}+a_{1} x+a_{2} x^{2}$. Suppose

$$
p(1)=-1, \quad p(2)=0, \quad p(3)=2
$$

What are the values of a_{0}, a_{1}, and a_{2} ?
(Hint: Write out what the above 3 equations say about the coefficients a_{0}, a_{1}, a_{2}.)
3. Find all values of a and b such that the system

$$
a x+3 y+z=1, \quad b x+y-z=0, \quad x-y+z=1
$$

has exactly one solution.
4. Find the basic solutions of the following homogeneous system:

$$
\begin{aligned}
x+2 y+z-w+2 v+4 u & =0 \\
2 x+y-z+w+v-u & =0 \\
x-2 z-2 w+3 u & =0
\end{aligned}
$$

5. Use properties of determiants to compute $\operatorname{det}(F)$, where

$$
F=\left[\begin{array}{lllll}
0 & 0 & a & 0 & 0 \\
0 & b & b & 0 & 0 \\
0 & 0 & c & c & 0 \\
d & d & d & 0 & 0 \\
0 & 0 & e & e & e
\end{array}\right]
$$

6. Consider the vectors

$$
\vec{u}_{1}=\langle 1,3,2\rangle, \quad \vec{u}_{2}=\langle 1,1,1\rangle, \quad \vec{u}_{3}=\langle 0,-1,2\rangle, \quad \vec{u}_{4}=\langle 1,1,6\rangle, \quad \vec{u}_{5}=\langle-3,1,1\rangle .
$$

(a) Without any computation, explain why $\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}, \vec{u}_{4}$, and \vec{u}_{5} are linearly dependent.
(b) Express \vec{u}_{4} as a linear combination of \vec{u}_{1}, \vec{u}_{2}, and \vec{u}_{3}.
(c) Show that \vec{u}_{1}, \vec{u}_{3}, and \vec{u}_{5} are linearly independent.
(d) Prove that any vector $\vec{v}=\langle a, b, c\rangle$ is a linear combination of \vec{u}_{1}, \vec{u}_{3}, and \vec{u}_{5}.
(Hint : Write $\langle a, b, c\rangle=x \vec{u}_{1}+y \vec{u}_{3}+z \vec{u}_{5}$ as a linear system. Does it have a solution?)

