1. Let $\mathbf{u}, \mathbf{w} \in \mathbb{R}^{3}$ be the vectors

$$
u=\left(\begin{array}{l}
2 \\
2 \\
0
\end{array}\right) \quad w=\left(\begin{array}{c}
-1 \\
5 \\
3
\end{array}\right)
$$

Let $\mathbf{v} \in \mathbb{R}^{3}$ be the vector

$$
v=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) .
$$

We would like to find the numbers x, y, and z, which solve the equation

$$
\begin{equation*}
(\mathbf{u} \times \mathbf{v})+\mathbf{v}=\mathbf{w} \tag{1}
\end{equation*}
$$

[5] (a) Show that Equation (1) can be written as the linear system

$$
\begin{aligned}
x+2 z & =-1, \\
y-2 z & =5, \\
-2 x+2 y+z & =3 .
\end{aligned}
$$

[10] (b) Solve the system of equations for \mathbf{v}.
[6] 2. For this problem, you may only use the rules for working with complex numbers (and exponentials) and the formula

$$
\cos (x)=\frac{1}{2}\left(e^{i x}+e^{-i x}\right)
$$

Let $t \in \mathbb{R}$ be an arbitrary real number. Simplify

$$
2[\cos (\pi t)]^{2}-1
$$

Do not use any trig identities.

UNIVERSITY OF MANITOBA

Final Exam Written Portion 1A

COURSE: MATH 1210
DATE \& TIME: Apr 26, 10:00-10:50 AM

DURATION: 50 MINUTES EXAMINER: Borgersen/Kristel PAGE: 4 of 7
[5] 3. Solve the following matrix equation for the matrix X :

$$
-5 X-2\left[\begin{array}{cc}
-5 & 2 \\
2 & -1
\end{array}\right]=\left[\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right]
$$

[11] 4. Fill in the blanks to complete the proof using the principle of induction that for all positive integers n, if A is an upper triangular matrix of size $n \times n$, then the determinant of A is the product of its diagonal elements.
We use the following notation: If A is a matrix of size $(k+1) \times(k+1)$, then

- $a_{i j}$ is the entry in the i-th row and the j-th column of A; and
- $A_{i j}$ is the matrix obtained by deleting the i-th row and the j-th column of A; and
- $c_{i j}$ is the cofactor of the (i, j)-th entry of A.

The product of the diagonal elements of A can then be written as $a_{11} a_{22} \ldots a_{n n}$.
Proof: For all integers $n \geqslant 1$, let P_{n} be the statement:
(a)

Base Case: The statement P_{1} says that if A is an upper triangular 1×1 matrix, then the determinant of A is the product of its diagonal elements. This is true.

Induction step: Let $k \geqslant 1$ be an arbitrary but fixed integer. Assume that the statement $\overline{P_{k}}$ holds, i.e., if A is an upper triangular matrix of size $k \times k$, then

Now, we wish to prove the statement P_{k+1}, i.e. if A is an upper triangular matrix of size $(k+1) \times(k+1)$, then

COURSE: MATH 1210
DATE \& TIME: Apr 26, 10:00-10:50 AM

DURATION: 50 MINUTES
EXAMINER: Borgersen/Kristel
PAGE: 6 of 7
(d)

$$
\begin{equation*}
|A|=\sum_{i=1}^{n} a_{i 1} c_{i 1}= \tag{2}
\end{equation*}
$$

The cofactor c_{11} is by definition $\left((-1)^{2}\right.$ times) the determinant of the matrix A_{11}. Thanks to P_{k} we know that
(e)

$$
\begin{equation*}
c_{11}=\left|A_{11}\right|= \tag{3}
\end{equation*}
$$

\qquad

Thus, combining Equation _ with Equation \qquad we obtain

$$
|A|=
$$

Thus P_{k+1} holds. By \qquad we conclude that the statement P_{n} holds for all positive integers n.

UNIVERSITY OF MANITOBA
Final Exam Written Portion 1A
COURSE: MATH 1210
DATE \& TIME: Apr 26, 10:00-10:50 AM
DURATION: 50 MINUTES
EXAMINER: Borgersen/Kristel
PAGE: 7 of 7
[0] 5. BONUS: MAX 3 MARKS. Let A be a square matrix and $n \in \mathbb{Z}^{+}$be such that $A^{n}=I$. Show that A must be invertible and find the inverse.

