COURSE: MATH 1210
DATE \& TIME: Mar 5, 50 Minutes

DURATION: IN CLASS
EXAMINER: Borgersen/Kristel
PAGE: 2 of 6
[6] 1. Use the formulas (valid for all $t \in \mathbb{R}$),

$$
\begin{equation*}
\cos (t)=\frac{1}{2}\left(e^{i t}+e^{-i t}\right), \quad \sin (t)=\frac{i}{2}\left(e^{-i t}-e^{i t}\right) \tag{1}
\end{equation*}
$$

to calculate

$$
2 \sin (\pi t) \cos (\pi t)
$$

Any solution in which the formulas in equation (1) are not used will be given a zero. Your answer must be of the form $\sin (\lambda t)$ for some $\lambda \in \mathbb{R}$. (You don't need to show that the formulas in Eq. (1) are valid.)

Solution: We start by substituting Eq. 1:

$$
\begin{aligned}
2 \sin (\pi t) \cos (\pi t) & =2\left(\frac{i}{2}\left(e^{-i \pi t}-e^{i \pi t}\right)\right)\left(\frac{1}{2}\left(e^{i \pi t}+e^{-i \pi t}\right)\right) \\
& =\frac{i}{2}\left(e^{-i \pi t}-e^{i \pi t}\right)\left(e^{i \pi t}+e^{-i \pi t}\right)
\end{aligned}
$$

We then expand the brackets:

$$
\begin{aligned}
\frac{i}{2}\left(e^{-i \pi t}-e^{i \pi t}\right)\left(e^{i \pi t}+e^{-i \pi t}\right) & =\frac{i}{2}\left(1-1+e^{-2 i \pi t}-e^{2 i \pi t}\right) \\
& =\frac{i}{2}\left(e^{-2 i \pi t}-e^{2 i \pi t}\right) \\
& =\sin (2 \pi t)
\end{aligned}
$$

COURSE: MATH 1210
DATE \& TIME: Mar 5, 50 Minutes

DURATION: IN CLASS
EXAMINER: Borgersen/Kristel
PAGE: 3 of 6
[9] 2. Let A be an upper triangular matrix. Use the principle of induction to prove that for all positive integers n, A^{n} is upper triangular. You may use (without proving it) the fact that if B and C are upper triangular matrices of the same size, then $B C$ is also upper triangular.

Solution: For all positive integers n, let P_{n} be the statement: " A 放 upper triangular".
Base case: The statement P_{1} says that A^{1} is upper triangular. Because $A^{1}=A$ this is true.
Inductive step: Let k be an arbitrary but fixed positive integer. Assume that the statement P_{k} holds, i.e., the matrix A^{k} is upper triangular. We must then prove that P_{k+1} holds, i.e. A^{k+1} is upper triangular. To that end, we write $A^{k+1}=A^{k} A$, thus A^{k+1} is the product of two upper triangular matrices, which implies that it is upper triangular itself. We conclude that P_{k+1} holds.
Conclusion: We have shown that P_{1} is true, and that P_{k} implies P_{k+1} for all positive integers k, thus, by the principle of mathematical induction, the statement P_{n} holds for all positive integers n.

COURSE: MATH 1210
DATE \& TIME: Mar 5, 50 Minutes

DURATION: IN CLASS
EXAMINER: Borgersen/Kristel
PAGE: 4 of 6
[6] 3. Given that $z_{1}=3+i$ is a zero of $f(x)=x^{4}-6 x^{3}+13 x^{2}-18 x+30$, find all zeros of $f(x)$.

Solution: We use the strategy used for problems $10 \& 11$ from Section 3.1 in the textbook.
Because f has only real coefficients, we know that $\bar{z}_{1}=3-i$ is a zero of f as well. This means that the polynomial $\left(x-z_{1}\right)\left(x-\bar{z}_{1}\right)$ must be a factor of f. We expand it:

$$
\begin{aligned}
g(x) & =\left(x-z_{1}\right)\left(x-\bar{z}_{1}\right)=(x-(3+i))(x-(3-i)) \\
& =x^{2}-((3-i)+(3+i)) x+(3+i)(3-i) \\
& =x^{2}-6 x+10
\end{aligned}
$$

Now, we can use e.g. long division to find the polynomial $h(x)$ such that $f(x)=$ $g(x) h(x)$:

$$
\begin{aligned}
& \left.x^{2}-6 x+10\right) \frac{x^{2}}{\frac{x^{4}-6 x^{3}+13 x^{2}-18 x+30}{}} \\
& \frac{-x^{4}+6 x^{3}-10 x^{2}}{3 x^{2}}-18 x+30 \\
& -3 x^{2}+18 x-30
\end{aligned}
$$

The result is $h(x)=x^{2}+3$. The zeroes of h are $\pm \sqrt{3} i$. Thus, the zeroes of the original polynomial f are:

$$
3+i, \quad 3-i, \quad \sqrt{3} i, \quad-\sqrt{3} i .
$$

COURSE: MATH 1210
DATE \& TIME: Mar 5, 50 Minutes

DURATION: IN CLASS
EXAMINER: Borgersen/Kristel
PAGE: 5 of 6
4. Consider the matrix

$$
B=\left(\begin{array}{ccc}
0 & -a & -b \\
0 & 0 & -c \\
0 & 0 & 0
\end{array}\right)
$$

[6] (a) Calculate B^{n} for all integers $n \geqslant 2$. Your answer should be presented in the form:

$$
B^{n}= \begin{cases}\ldots & \text { if } n=2 \\ \ldots & \text { if } n=3 \\ \ldots & \text { if } n \geqslant 4\end{cases}
$$

Solution: First we calculate B^{2} :

$$
B^{2}=\left(\begin{array}{ccc}
0 & -a & -b \\
0 & 0 & -c \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & -a & -b \\
0 & 0 & -c \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & a c \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Next, we calculate B^{3}

$$
B^{3}=B^{2} B=\left(\begin{array}{ccc}
0 & 0 & a c \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & -a & -b \\
0 & 0 & -c \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Now, if $n \geqslant 4$, then $B^{n}=B^{3} B^{n-3}$, and because B^{3} is the zero matrix, it follows that B^{n} is the zero matrix. (We need $n \geqslant 4$ for B^{n-3} to make sense!)
[0] (b) BONUS: MAX 4 MARKS. Calculate the matrix D given by the formula

$$
D=\mathrm{I}_{3}+\sum_{n=1}^{5} B^{n}
$$

Let A be the matrix $A=\mathrm{I}_{3}-B$, then calculate $A D$.
Solution: The matrix D is given by

$$
\begin{gathered}
D=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+\left(\begin{array}{ccc}
0 & -a & -b \\
0 & 0 & -c \\
0 & 0 & 0
\end{array}\right)+\left(\begin{array}{ccc}
0 & 0 & a c \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
1 & -a & -b+a c \\
0 & 1 & -c \\
0 & 0 & 1
\end{array}\right) \\
A D=\left(\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & -a & -b+a c \\
0 & 1 & -c \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & -a+a & -b+a c-a c+b \\
0 & 1 & -c+c \\
0 & 0 & 1
\end{array}\right)=\mathrm{I}_{3}
\end{gathered}
$$

