UNIVERSITY OF MANITOBA
 Second Assignment

COURSE: MATH 1210
RELEASE DATE: March 1, 8:30 AM
DUE DATE: March 11, 5 PM
EXAMINER: Comicheo/Moghaddam/Shepelska
PAGE: 1 of 3

Attempt all questions and show all your work. Some or all questions will be marked. Simplify your answers as much as possible.

1. Let h be a real number and $P(x)=x^{5}-5 x^{3}+(h-4) x^{2}-h$.
(a) Prove that $x=-1$ is a root of $P(x)$ regardless of the value of h.
(b) Find all values of h for which the multiplicity of the root $x=-1$ of $P(x)$ is greater than one. (Hint: express $P(x)$ as $P(x)=(x+1) Q(x)$.)
2. Let $P(x)=x^{5}+3 x^{4}-x^{3}-10 x^{2}-14 x-4$. Given that $(-1+i)$ is a zero of $P(x)$, find all zeros of $P(x)$.
3. Consider the equation $4 x^{8}-6 x^{7}-2 x^{5}+4 x^{3}+x^{2}-9 x=10$.
(a) Find the possible number of positive and the possible number of negative real solutions of this equation.
(b) Prove that the above equation has at least two non-real solutions.
4. Note that the Bounds Theorem holds for the polynomials with complex coefficients and complex roots if one interprets $|w|$ as the modulus of w.
(a) Apply the Bounds Theorem to find the upper bound for moduli of the roots of the polynomial

$$
P(x)=(3-4 i) x^{4}-(7+7 i) x^{3}-4 x^{2}+(8+6 i) x+9 i .
$$

Show all your work.
(b) Use the result of (a) to prove that $x=\sqrt{7}-2 i$ cannot be a root of $P(x)$.
5. Let $P(x)=6 x^{5}-x^{4}+4 x^{3}-13 x^{2}+4$.
(a) Use the Rational Roots Theorem to find all possible rational roots of $P(x)$.
(b) Find all roots of $P(x)$.
6. Consider the matrices

$$
A=\left[\begin{array}{rr}
1 & -3 \\
2 & 1
\end{array}\right], \quad B=\left[\begin{array}{rr}
6 & -1 \\
3 & 4 \\
1 & 0
\end{array}\right], \quad C=\left[\begin{array}{rrr}
2 & 0 & -5 \\
-1 & 4 & 2
\end{array}\right], \quad D=\left[\begin{array}{rrr}
4 & 2 & 1 \\
-2 & 0 & 3 \\
0 & 1 & 2
\end{array}\right]
$$

UNIVERSITY OF MANITOBA

Second Assignment
COURSE: MATH 1210
RELEASE DATE: March 1, 8:30 AM
DUE DATE: March 11, 5 PM
EXAMINER: Comicheo/Moghaddam/Shepelska
PAGE: 2 of 3

In parts (a)-(e) find the specified matrix when possible. If not possible, explain why.
(a) $3 A-4 B$
(b) A^{3}
(c) $B A D$
(d) $A D B$
(e) $3 A C-A B^{T}$
(f) Find the matrix X that satisfies the equation $2 X^{T}+I_{2}=C B$.
(g) Find the dimensions of a matrix Y that would allow for the product $Y D C^{T} Y$ to be defined.

