UNIVERSITY OF MANITOBA
 Third Assignment

COURSE: MATH 1210
RELEASE DATE: April 1, 8:30 AM
DUE DATE: April 11, 5 PM
EXAMINER: Comicheo/Moghaddam/Shepelska
PAGE: 1 of 2

Attempt all questions and show all your work. Some or all questions will be marked. Simplify your answers as much as possible.

1. Consider point $P(2,1,-3)$, plane $\Pi: 4 x-y+3 z=-2$ and line

$$
\ell: x=1+2 t, \quad y=-1-2 t, \quad z=2+4 t, \quad \text { where } \quad t \in \mathbf{R} .
$$

(a) Is the point P on the plane Π ? Why?
(b) Find the intersection point of the plane Π and the line ℓ.
(c) Find parametric equations and symmetric equations of the line through P and perpendicular to the plane Π.
(d) Find an equation for the plane containing the point P and the line ℓ.
(e) Let ℓ_{1} be the line passing through the point P and the origin. Given that the lines ℓ and ℓ_{1} intersect, find the intersection point.
2. Solve the first two systems of linear equations using Gauss-Jordan elimination method and the third one by Gaussian elimination method.

$$
\begin{array}{rlll}
2 x+6 y+2 z & =-1 & & 4 x+0 \\
\text { (i) } \begin{aligned}
2 x+3 y+w & =4
\end{aligned} & \text { (ii) } & 2 x+3 \\
+z+w & =-1 & \\
& & \\
& 2 x+2 \\
4 x+4 \\
2 x_{1} & -4 x_{2} & -3 x_{3}+12 x_{4} & =1 \\
& -x_{1}+2 x_{2} & +2 x_{3}-7 x_{4} & =1 \\
-x_{1}+2 x_{2} & -3 x_{4} & =-5
\end{array}
$$

3. Consider the homogeneous system of linear equations

$$
\begin{array}{llrl}
2 x_{1}+10 x_{2} & -8 x_{3} & +2 x_{6}= & 0 \\
3 x_{1}+15 x_{2} & -12 x_{3} & +x_{5}+2 x_{6}= & 0 \\
-x_{1}-5 x_{2} & +4 x_{3}+x_{4} & +x_{6}= & 0
\end{array}
$$

(a) Without solving predict the number of solutions of this system. Explain.
(b) Find all basic solution.
4. Use Cramer's rule to solve the following system of linear equations for x_{3} only.

$$
\begin{array}{rll}
-x_{1}+6 x_{2}+3 x_{4} & =-5 \\
x_{2}+x_{4} & =-1 \\
4 x_{1}-x_{2}+2 x_{4} & =-5 \\
5 x_{2}+x_{3} & =0
\end{array}
$$

5. Let $A=\left[\begin{array}{ccc}1 & 0 & 2 \\ 3 & 5 & 1 \\ 6 & 1 & -1\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 3 & 1 \\ 0 & 2 & -1 \\ 1 & 5 & 0\end{array}\right]$. Find determinant of the matrix $A^{2022} B^{2022}-2 A^{2021} B^{2021}$.
6. Determine whether each set of vectors $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is linearly dependent or linearly independent.
(a) $\mathbf{u}_{1}=<-10,11>, \mathbf{u}_{2}=<3,15>, \mathbf{u}_{3}=<-14,21>$
(b) $\mathbf{u}_{1}=<6,3,4>, \mathbf{u}_{2}=<1,7,5>, \mathbf{u}_{3}=<5,-4,-1>$
(c) $\mathbf{u}_{1}=<1,2,4,-2>, \mathbf{u}_{2}=<1,3,4,-3>, \mathbf{u}_{3}=<1,2,4,-1>$
7. Let $\mathbf{u}=<1,2,-3,0,1>, \mathbf{v}=<4,-1,0,0,-2>$ and $\mathbf{w}=<-6,3,-2, a-2 b, 2 a>$ where a and b are integers. Find values of a and b such that \mathbf{w} is a linear combination of \mathbf{u} and \mathbf{v}.
