UNIVERSITY OF MANITOBA
 Final Exam

COURSE: MATH 1210
DATE \& TIME: April 29, 9 AM
DURATION: 120 minutes
EXAMINER: Comicheo/Moghaddam/Shepelska
PAGE: 1 of 2

Attempt all questions and show your work.
[8] 1. Let $P(x)=4 x^{4}-x^{3}-x^{2}-x-5$. Find all the roots of $P(x)$ provided that $-i$ is one of them.
2. Consider the plane $\Pi: 2 x+3 y+z=9$ and the lines:

$$
\begin{aligned}
& \mathcal{L}_{1}: x=1, y-1=-t, z=1-3 t \\
& \mathcal{L}_{2}: x=2 s+1, y=1-3 s, z=1
\end{aligned}
$$

[3] (a) Find the intersection point of the line \mathcal{L}_{1} and the plane Π.
[7] (b) Find a point-normal equation of the plane Π_{1} containing two intersecting lines \mathcal{L}_{1} and \mathcal{L}_{2}.
[5] 3. Consider the system of linear equations

$$
\begin{array}{rll}
x_{1}+2 x_{2} & -3 x_{3}+2 x_{4} & +3 x_{5}=0 \\
x_{1}+2 x_{2} & -3 x_{3}+5 x_{4} & +4 x_{5}=0 . \\
3 x_{1}+6 x_{2} & -9 x_{3}+7 x_{4} & +9 x_{5}=0
\end{array}
$$

Without solving predict the number of solutions of this system. Explain.
[7] 4. Let $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{rrc}-2 & 0 & 0 \\ 0 & -1 & 0 \\ -2 & 1 & -1\end{array}\right]$. Given that $\left|A B^{-1}+4 I\right|=23$, find determinant of the matrix

$$
A^{10} B^{-10}+4 A^{9} B^{-9}
$$

[9] 5. Let $\mathbf{u}=<1,0, a, 0>, \mathbf{v}=<0,1, a^{2}-4, a>$ and $\mathbf{w}=<0,1,0, a>$ where a is a real number. Find all values of a for which $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a linearly dependent set. Show your work.
[6] 6. Let k be a real number and consider the linear system

$$
\begin{cases}k x+2 z & =4 \\ 2 x-y & =-2 \\ 3 y+z & =1\end{cases}
$$

Use Cramer's rule to find all values of k for which $x=-1$.

COURSE: MATH 1210
DATE \& TIME: April 29, 9 AM
DURATION: 120 minutes
EXAMINER: Comicheo/Moghaddam/Shepelska
PAGE: 2 of 2
7. Consider the matrix $A=\left(\begin{array}{rrr}-1 & 3 & 2 \\ 0 & 1 & 1 \\ 2 & -6 & -3\end{array}\right)$.
[7] (a) Find the inverse of A by direct method using elementary row operations.
[3] (b) Solve the linear system $2 A^{T}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)+\left(\begin{array}{r}6 \\ -8 \\ 0\end{array}\right)=\mathbf{0}$, where $\mathbf{0}$ is the zero matrix of the appropriate size.
8. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation such that $T(\langle 3,0\rangle)=\langle 6,9\rangle$ and $T(\langle 0,-1\rangle)=$ $\langle 2,-5\rangle$.
[6] (a) Find the matrix associated with T.
[2] (b) Find the image of $\langle-1,4\rangle$ under T.
9. Let $A=\left(\begin{array}{rrr}2 & -1 & 1 \\ 1 & 4 & 0 \\ 0 & 0 & 3\end{array}\right)$.
[5] (a) Show that the only eigenvalue of the matrix A is $\lambda=3$ by solving the characteristic equation.
[7] (b) Find all eigenvectors corresponding to eigenvalue $\lambda=3$.

