Due date: February 6

Attempt all questions and show all your work. Selected number of questions will be marked.

Attach to Honesty Declaration Form

1. Use mathematical induction on integer n to prove each of the following:
(a) $\frac{1}{3 \cdot 2 \cdot 3}+\frac{1}{3 \cdot 3 \cdot 4}+\frac{1}{3 \cdot 4 \cdot 5}+\cdots+\frac{1}{3 n(n+1)}=\frac{n-1}{6(n+1)}$ for $n \geq 2$;
(b) $11^{2 n}+11^{n}-2$ is divisible by 10 for $n \geq 1$.
(c) $\quad\left(1-\frac{3}{4}\right)\left(1-\frac{5}{8}\right)\left(1-\frac{7}{12}\right) \cdots\left(1-\frac{2 n+1}{4 n}\right)=\frac{(2 n)!}{2^{3 n}(n!)^{2}}$, for $n \geq 1$. (You are not allowed to use any other method.)
2. Identities $\sum_{k=1}^{m} k=\frac{1}{2}[m(m+1)]$ and $\sum_{k=1}^{m} k^{2}=\frac{1}{6}[m(m+1)(2 m+1)]$ are given.
(a) First write the sum $1^{2}+4^{2}+7^{2}+10^{2}+\cdots+(6 n+1)^{2}$ in sigma notation and then use the identities to prove that

$$
1^{2}+4^{2}+7^{2}+10^{2}+\cdots+(6 n+1)^{2}=(2 n+1)\left(12 n^{2}+9 n+1\right)
$$

(b) Use the identities to evaluate the sum $\sum_{j=16}^{27}\left[(3 j-45)^{2}-7\right]$.
3. Express each of the following in simplified Cartesian form.
(a) $\frac{(\sqrt{2}-\sqrt{6} i)^{34}}{(2 \sqrt{2}+2 \sqrt{6} i)^{20}}$;
(b) $\frac{1}{2^{10}}\left(i^{27}(1-i)^{20}+(-\sqrt{3}+i)^{11}\right)$.
4. Find the complex number z, in Cartesian form, such that it satisfies the equation

$$
(1-\sqrt{3} i)^{5}+\left(\overline{\sqrt{3}-i)^{5}} z=32(1+\sqrt{3} i)\right.
$$

5. Find all complex solutions of the equation $\frac{1}{3} z^{5}-81\left(\frac{\sqrt{3}}{2}+\frac{1}{2} i\right)=0$. Write the roots in exponential form and use principal value of their arguments.
