Due date: April 3

Attempt all questions and show all your work. Selected number of questions will be marked.

Attach to Honesty Declaration Form

1. For a, b, c three real numbers consider the system

$$
\begin{aligned}
x_{0}+a x_{1}+a^{2} x_{2}+a^{3} x_{3} & =a^{4} \\
x_{0}+b x_{1}+b^{2} x_{2}+b^{3} x_{3} & =b^{4} \\
x_{0}+c x_{1}+c^{2} x_{2}+c^{3} x_{3} & =c^{4}
\end{aligned}
$$

(a) Without solving the system, show that it can never have a unique solution for any value of a, b and c.
(b) Solve the system for $(a, b, c)=(0,1,-1)$.
2. For which values of p and q is the following matrix in reduced row echelon form?

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1-q & 1 \\
0 & 0 & p^{2}-q p-2
\end{array}\right)
$$

3. For a real number x consider the matrix

$$
A=\left(\begin{array}{ccc}
1 & x & 2 \\
x & 0 & 2 \\
1 & 1 & 1+x
\end{array}\right)
$$

(a) Compute the determinant of A for $x=1$.
(b) Find all values of x for which $|A|=0$. Hint: use part (a).
4. Let \mathbf{u} and \mathbf{v} be two nonparallel nonzero vectors with three components. Show that the vectors \mathbf{u}, \mathbf{v} and $\mathbf{u} \times \mathbf{v}$ are linearly independent.
5. Determine if each of the following set of vectors are linearly independent.
(a) $\mathbf{u}_{1}=\langle 1,-3,7\rangle, \mathbf{u}_{2}=\langle 5,2,3\rangle, \mathbf{u}_{3}=\langle 13,-7,-1\rangle, \mathbf{u}_{4}=\langle 1,1,-1\rangle$.
(b) $\mathbf{u}_{1}=\langle 2,0,3\rangle, \mathbf{u}_{2}=\langle 1,-1,3\rangle, \mathbf{u}_{3}=\langle 6,-2,2\rangle$.
6. (a) Are the following three vectors

$$
\mathbf{u}_{1}=\langle 1,5,2,2\rangle, \mathbf{u}_{2}=\langle 2,4,1,2\rangle, \mathbf{u}_{3}=\langle-1,1,0,-1\rangle
$$

linearly dependent?
(b) Write the vector $\mathbf{v}=\langle 3,3,-1,1\rangle$ as a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$.

Justify your answer.
7. For a real number t consider the matrix

$$
A=\left(\begin{array}{ccc}
t & 0 & 6 \\
1 & 3 & 4 \\
0 & 1 & -1
\end{array}\right)
$$

(a) Find the values of t for which A is invertible.
(b) Use any method to compute A^{-1} for $t=1$.
8. Consider the vectors

$$
\mathbf{u}_{1}=\langle 1,2,0,0\rangle, \quad \mathbf{u}_{2}=\langle-2,1,0,-7\rangle, \quad \mathbf{u}_{3}=\langle 13,0,2,0\rangle, \quad \mathbf{u}_{4}=\langle 1,0,0,3\rangle
$$

Suppose that the vector $\mathbf{v}=\langle 4,0,1,0\rangle$ can be written as a linear combination

$$
C_{1} \mathbf{u}_{1}+C_{2} \mathbf{u}_{2}+C_{3} \mathbf{u}_{3}+C_{4} \mathbf{u}_{4}=\mathbf{v}
$$

Use Cramer's rule to find C_{2}. You are not allowed to use any other method.
9. Find basic solutions of the homogeneous system

$$
\begin{aligned}
x_{1}-x_{2}+3 x_{3}-x_{4} & =0 \\
x_{1}+x_{2}+x_{3}+3 x_{4} & =0 \\
2 x_{1}+x_{2}+3 x_{3}+4 x_{4} & =0 \\
3 x_{1}+x_{2}+5 x_{3}+5 x_{4} & =0
\end{aligned}
$$

