MATH 1210 Final Exam Winter 2023

Date and Time: April 14 at 6:00 PM
Duration: 2 Hours

Attempt all questions and show your work. Simplify your answers as much as possible.

1. (7 points) Let $A=\left[\begin{array}{cc}1 & -i \\ 0 & 1+i\end{array}\right]$ where i the complex number for which $i^{2}=-1$. Use mathematical induction on the integer $n \geq 1$ to prove that

$$
A^{n}=\left[\begin{array}{cc}
1 & 1-(1+i)^{n} \\
0 & (1+i)^{n}
\end{array}\right]
$$

2. Consider the polynomial $P(x)=x^{3}+x^{2}+2 x+2$.
(a) (3 points) Prove that $P(x)$ has no zeros in the interval [lll $\left.\begin{array}{ll}0 & 2\end{array}\right]$.
(b) (6 points) Find all the zeros of $P(x)$.
3. Consider the two lines

$$
\begin{array}{lll}
\ell_{1}: & x=1+t, & y=-2+t, \\
\ell_{2}: & x=2+s=3-2 t \\
& y=3-3 s, & z=-2+s
\end{array}
$$

(a) (5 points) Find the intersection point of the lines ℓ_{1} and ℓ_{2}.
(b) (5 points) Find an equation of the plane that contains the two lines ℓ_{1} and ℓ_{2}.
4. Consider the system

$$
\begin{array}{r}
x_{1}+x_{2}-2 x_{3}+4 x_{4}=0 \\
-2 x_{1}-x_{2}+4 x_{3}-5 x_{4}=0 \\
4 x_{1}+x_{2}-8 x_{3}+7 x_{4}=0 .
\end{array}
$$

(a) (3 points) Without solving the system, show that it cannot have a unique solution.
(b) (9 points) Use Gauss-Jordan elimination to find all basic solutions of the system.
5. (8 points) Consider the system

$$
\begin{aligned}
2 x+z & =3 \\
x+2 y+t z & =5 \\
-x+2 y & =4
\end{aligned}
$$

where t is a real number. It is given to you that the system has a unique solution (x, y, z) with $z=1$. Use Cramer's rule to find t.
6. Let $\mathbf{u}_{1}=\langle 1,0,0,0\rangle, \mathbf{u}_{2}=\langle 2,1,-3,-2\rangle$ and $\mathbf{u}_{3}=\langle 4,2,-5,-1\rangle$.
(a) (6 points) Determine if the vectors $\mathbf{u}_{1}, \mathbf{u}_{2}$ and \mathbf{u}_{3} are linearly dependent or linearly independent.
(b) (6 points) Write the vector $\mathbf{v}=\langle 0,-1,2,-1\rangle$ as a linear combination of the vectors $\mathbf{u}_{1}, \mathbf{u}_{2}$ and \mathbf{u}_{3}.
7. Consider the invertible matrix

$$
A=\left(\begin{array}{ccc}
2 & -1 & -1 \\
2 & -2 & 1 \\
0 & 1 & -1
\end{array}\right)
$$

It is given that $A^{-1}=\left(\begin{array}{lll}b_{11} & b_{12} & \frac{3}{2} \\ b_{21} & b_{22} & 2 \\ b_{31} & b_{32} & 1\end{array}\right)$.
(a) (5 points) Find the entry b_{21} of A^{-1} using the adjoint formula.
(b) (3 points) Solve the linear system $A X+2 B=\mathbf{0}$, where $X=\left(\begin{array}{l}x \\ y \\ z\end{array}\right), B=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$, and $\mathbf{0}$ is the zero matrix of the appropriate size.
8. Let $\mathbf{u}=\langle 1,0\rangle, \mathbf{v}=\langle-2,1\rangle$ and $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation such that $T(\mathbf{u})=\langle-1,1\rangle$ and $T(\mathbf{v})=\langle 1,2\rangle$.
(a) (4 points) Use linearity of T to find $T(\langle 0,1\rangle)$.
(b) (3 points) Find the matrix associated with T.
(c) (2 points) Find the image of $\langle 5,-2\rangle$ under T.
9. (7 points) Find all eigenvalues of the matrix $A=\left(\begin{array}{rrr}1 & 0 & 1 \\ 0 & 3 & 0 \\ -1 & 0 & -1\end{array}\right)$.
10. (8 points) Consider the matrix $A=\left(\begin{array}{rr}2 & -2 \\ 1 & 0\end{array}\right)$. Given that one of the eigenvalues of A is $1+i$, find all eigenvectors that correspond to the eigenvalue $1+i$.

