MATH 1210 Midterm Exam Winter 2023

Date and Time: March 14 at 5:45 PM Duration: 75 minutes

Attempt all questions and show your work. Simplify your answers as much as possible.

1. (9 points) Use mathematical induction to prove that

$$
\left(1-\frac{1}{4}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{8}\right) \cdots\left(1-\frac{1}{2 n}\right)=\frac{(2 n)!}{2^{2 n-1}(n!)^{2}}
$$

for all integers $n \geq 2$. (You are not allowed to use any other method.)
2. (6 points) Use the identities

$$
\sum_{j=1}^{n} j=\frac{n(n+1)}{2} \quad \text { and } \quad \sum_{j=1}^{n} j^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

to evaluate the following sum

$$
\sum_{k=11}^{20}\left[(k-10)^{2}-2 k\right]
$$

3. Let $z=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i$.
(a) (5 points) Show that z is one the $50^{\text {th }}$ roots of the complex number i.

Hint: You do not need to find all $50^{\text {th }}$ roots of i.
(b) (8 points) Evaluate the following expression. Write your answer in Cartesian form and simplify as much as possible.

$$
\frac{z^{50}}{\left(z-\frac{2}{\sqrt{2}} i\right)^{60}}
$$

4. Let $P(x)=8 x^{4}-4 x^{3}+10 x^{2}+x+5$.
(a) (4 points) Use the Rational Roots Theorem to find all possible rational roots of $P(x)$.
(b) (4 points) Apply the Bounds Theorem to $P(x)$ and use it to eliminate some possible roots from the list obtained in (a).
(c) (6 points) Given that $2 x-1+2 i$ is a factor of $P(x)$, find all roots of $P(x)$.
5. Consider the matrices

$$
A=\left[\begin{array}{rr}
-1 & 0 \\
2 & -3
\end{array}\right], \quad B=\left[\begin{array}{rrr}
3 & 1 & 4 \\
0 & 1 & -2
\end{array}\right], \quad C=\left[\begin{array}{rr}
-3 & 1 \\
2 & 0 \\
5 & -1
\end{array}\right]
$$

(a) (6 points) Evaluate the expression $C A^{2}-2(A B)^{T}$.
(b) (3 points) Suppose that E is a matrix such that the expression $B^{T}-E C$ is defined. Find the size of E.
6. Consider the point $P(0,1,-1)$ and the vectors $\mathbf{u}=\langle k, 5,2\rangle$ and $\mathbf{v}=\langle k,-k, 3\rangle$.
(a) (3 points) For which values of k are the vectors \mathbf{u} and \mathbf{v} orthogonal?
(b) (6 points) For $k=1$, find an equation of the plane that contains the point P and its normal vector is perpendicular to both \mathbf{u} and \mathbf{v}.
7. (10 points) Solve the following linear system of equations.

$$
\begin{array}{rlrl}
7 x_{1}+x_{2} & +x_{4} & =1 \\
6 x_{1}+x_{2} & & & =0 \\
5 x_{1}+x_{2} & & -x_{4} & =-1 \\
& & x_{3}+2 x_{4} & =1
\end{array}
$$

