DATE: February 8, 2011 COURSE: <u>MATH 1210</u> EXAMINATION: Techniques of Classical & Linear Algebra

FAMILY NAME: (Print GIVEN NAME(S): (Prin			-			
STUDENT NUMBER:			,			
LAB SECTION:						
SIGNATURE: (in ink)						
	· · · · · · · · · · · · · · · · · · ·		that cheat is below t	0	ous offen	ce. I have read
		A01	R. 7	Thomas		
		A02	T. Moh	ammed		
INSTRUCTION	5 то 9	STUDE	NTS:			
This is a 45 minute your work clearly		Please	show			
No calculators, text are permitted. No o translators, or other	cellphor r electr	nes or ele onic devi	ectronic ices			
able to receive or tr permitted.	ransmit a	a signal	are	Question	Points	Score
	-		0	1	12	

This exam has a title page and 3 pages of questions. Please check that you have all the pages.

The value of each question is indicated in the lefthand margin beside the statement of the question. The total value of all questions is 35 points.

Answer all questions on the exam paper in the space provided beneath the question. If you need more room, you may continue your work on the reverse side of the previous page, but CLEARLY

INDICATE that your work is continued.

Question	Points	Score
1	12	
2	5	
3	7	
4	11	
Total:	35	

DATE: February 8, 2011	Midterm $\#1$
COURSE: MATH 1210	PAGE: 1 of 3
EXAMINATION: Techniques of Classical & Linear Algebra	TIME: 45 minutes

[12] 1. Give in the form a + bi, with a and b real, the following, simplified as far as practical:

$$(2+i2\sqrt{3})^{27}, \quad \left(\frac{2+i}{1-i}\right)e^{2+3i}.$$

Solution: $(2 + i2\sqrt{3})^{27}$ Let $z = 2 + i2\sqrt{3} = 4e^{\frac{\pi}{3}i}$, where $|z| = \sqrt{x^2 + y^2} = 2\sqrt{4} = 4$ and $\arg z = \frac{\pi}{3}$ $z^{27} = 4^{27}e^{27(\frac{\pi}{3})i} = 4^{27}e^{9\pi i} = 4^{27}e^{\pi i} = 4^{27}[\cos \pi + i\sin \pi] = 4^{27}(-1) + 0i = -2^{54} + 0i$, (where $9\pi = \pi + 4(2\pi)$)

$$\begin{pmatrix} \frac{2+i}{1-i} \end{pmatrix} e^{2+3i} = \left(\frac{2+i}{1-i} \cdot \frac{1+i}{1+i} \right) e^2 e^{3i} = e^2 \frac{(2-1)+(2+1)i}{2} (\cos 3+i \sin 3)$$
$$= \frac{e^2}{2} (1+3i)(\cos 3+i \sin 3) = \underbrace{\frac{e^2}{2}(\cos 3-3 \sin 3)}_{a} + \underbrace{\frac{e^2}{2}(\sin 3+3 \cos 3)}_{b} i$$

[5] 2. Rewrite the following using sigma notation with index beginning at 1:

$$1(10) - 2(9) + 3(8) - \dots - 10(1).$$

Solution: When $i = 1 \Rightarrow 1(10) = 1(11 - 1)$ and when $i = 2 \Rightarrow 2(9) = 2(11 - 2) \cdots$ when $i = 10 \Rightarrow 10(1) = 10(11 - 10)$.

Therefore the above sum can be written as

$$\sum_{i=1}^{10} \, (-1)^{i+1} \, i \, (11-i) \, .$$

DATE: February 8, 2011	Midterm $\#1$
COURSE: MATH 1210	PAGE: $2 \text{ of } 3$
EXAMINATION: Techniques of Classical & Linear Algebra	TIME: 45 minutes

[7] 3. (a) Rewrite the sum $8 + 11 + 14 + \cdots + 38$ using sigma notation with index beginning at 1.

Solution:

when $k = 1 \implies 8 = 3(1) + 5$, and when $k = 2 \implies 11 = 3(2) + 5 \cdots$ The upper limit can be found as following: when k = n then $38 = 3(n) + 5 \implies n = \frac{38-5}{3} = 11$

$$\sum_{k=1}^{11} (3k+5)$$

(b) Using $\sum_{j=1}^{n} j = \frac{n(n+1)}{2}$, evaluate the sum given in part (a).

Solution:

$$\sum_{k=1}^{11} (3k+5) = \sum_{k=1}^{11} 3k + \sum_{k=1}^{11} 5 = 3\sum_{k=1}^{11} k + 11(5) = 3\frac{11(12)}{2} + 55 = 253$$

DATE: February 8, 2011	Midterm $\#1$
COURSE: MATH 1210	PAGE: 3 of 3
EXAMINATION: Techniques of Classical & Linear Algebra	TIME: 45 minutes

[11] 4. Show by mathematical induction that 6 divides $19^n - 13^n$ for all values of n greater than or equal to 1.

Solution:

Let P_n : $6 \mid 19^n - 13^n$, $n \ge 1$

- 1) When n = 1, 19 13 = 6 and it is clearly divisible by 6. That is $P_1: 6 | 19 13$, is true.
- 2) Assume P_k : 6 | 19^k 13^k, to prove P_{k+1} : 6 | 19^{k+1} 13^{k+1}.

Proof:

$$19^{k+1} - 13^{k+1} = 19^{k} (19) - 13^{k} (13) + 19(13^{k}) - 19 (13^{k})$$
$$= 19(19^{k} - 13^{k}) + 13 (19 - 13)$$
$$= 19 \underbrace{(19^{k} - 13^{k})}_{\text{by } P_{k} \text{ it is divisible by } 6} + 13 (6) = 6(g(k))$$

Where g(k) is a number depending on k. So, P_{k+1} is true.

3) By PMI, P_n is true for all $n\geq 1$.