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1.[12] Give in the form a + bi, with a and b real, the following, simplified as far as
practical:

(2 + i2
√
3)27,

(
2 + i

1− i

)

e2+3i.

Solution: (2 + i2
√
3)27

Let z = 2 + i 2
√
3 = 4 e

π

3
i, where | z | =

√

x2 + y2 = 2
√
4 = 4 and arg z = π

3

z27 = 427 e27 (
π

3
)i = 427 e9π i = 427 eπ i = 427[cos π + i sin π] = 427 (−1) + 0 i =

−254 + 0 i, (where 9π = π + 4(2 π) )

(
2 + i

1− i

)

e2+3i =

(
2 + i

1− i
· 1 + i

1 + i

)

e2 e3i = e2
(2− 1) + (2 + 1) i

2
(cos 3 + i sin 3)

=
e2

2
(1 + 3i)(cos 3 + i sin 3) =

e2

2
(cos 3− 3 sin 3)

︸ ︷︷ ︸

a

+
e2

2
(sin 3 + 3 cos 3)

︸ ︷︷ ︸

b

i

2.[5] Rewrite the following using sigma notation with index beginning at 1:

1(10)− 2(9) + 3(8)− · · · − 10(1).

Solution:
When i = 1 ⇒ 1(10) = 1(11− 1) and when i = 2 ⇒ 2(9) = 2(11− 2) · · ·

when i = 10 ⇒ 10(1) = 10(11− 10).

Therefore the above sum can be written as

10∑

i=1

(−1)i+1 i (11− i) .
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3.[7] (a) Rewrite the sum 8 + 11 + 14 + · · · + 38 using sigma notation with index
beginning at 1.

Solution:

when k = 1 ⇒ 8 = 3(1)+5, and when k = 2 ⇒ 11 = 3(2)+5 · · ·
The upper limit can be found as following:
when k = n then 38 = 3(n) + 5 ⇒ n = 38−5

3
= 11

11∑

k=1

(3k + 5)

(b) Using

n∑

j=1

j =
n(n + 1)

2
, evaluate the sum given in part (a).

Solution:

11∑

k=1

(3k + 5) ==
11∑

k=1

3 k +
11∑

k=1

5 = 3
11∑

k=1

k + 11(5) = 3
11(12)

2
+ 55 = 253
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4.[11] Show by mathematical induction that 6 divides 19n−13n for all values of n greater
than or equal to 1.

Solution:

Let Pn : 6 | 19n − 13n, n ≥ 1

1) When n = 1, 19 − 13 = 6 and it is clearly divisible by 6. That is
P1 : 6 | 19− 13 , is true.

2) Assume Pk : 6 | 19k − 13k, to prove Pk+1 : 6 | 19k+1 − 13k+1.

Proof:
19k+1 − 13k+1 = 19k (19)− 13k (13) + 19(13k)− 19 (13k)

= 19(19k − 13k) + 13 (19− 13)

= 19 (19k − 13k)
︸ ︷︷ ︸

by Pk it is divisible by 6

+13 (6) = 6(g(k) )

Where g(k) is a number depending on k. So, Pk+1 is true.

3) By PMI, Pn is true for all n ≥ 1 .


