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1 Introduction

This paper completes the extension to third order of compatibility conditions, in the sense popularized by
T.Y. Thomas [9] (see also [10]), which can be used to study propagation of discontinuities of a vector field
defined on a surface in euclidean space. H. Cohen and the author considered such conditions for a general
tensor defined on a plane in [1]; here the tensor is restricted to be a three-dimensional vector, but the plane is
replaced by a curved surface, extending the work of Cohen and Wang [6] and the author [7]. The third-order
results of [1] were subsequently used to study acceleration waves in plates [2, 3|, and it is hoped that the
present conditions may be useful in similar study, particularly on shells, where the wave may alter the shape
of the shell, as [6] was used in [4, 5].

This section serves to introduce the topic of the paper and geometrical notation. Section two describes
the kinematic notation and results drawn upon. Section three derives some commutation relations needed
in subsequent sections. Section four quotes and derives directional derivatives to compare with the partial
derivatives derived in section five. The compatibility conditions are derived in section six for trajectories
normal to the singular curves, and in the final section this context is extended to trajectories oblique to
those normals.

A smooth surface S in euclidean space E3 is customarily represented by three scalar functions

=2 0% (i=1,2,3;a=1,2), (1.1)

where the z? are cartesian co-ordinates indicating positions and the 8¢, cartesian co-ordinates in E?, label
the points. The summation convention will be used throughout with the ranges 1, 2, 3, for i and 1, 2, for
Greek. A moving surface S; then can be represented by making the z¢ functions of time, ! = 2*(#% t). In
vector notation, ¥ = Z(0%¢). At each point of the surface and at each time ¢, a basis is supplied for the
tangent space of E2 by the surface’s tangent-space basis ho =7 o, Where we are ubing a comma to indicate
partial differentiation, and hg, chosen to be perpendicular to h1 and hy and to make (hl, hg, h3) a right-hand
system. In these terms, the metric of the surface has covariant components hag = h hg and contravariant
components h*? such that h*hyg = 55. The reciprocal basis then is given by he = h"”h77 and h3 = h3, and

a } Ty Qg = Foas R,

the Christoffel symbols and the second fundamental form of the surface by { 3y

respectively. These relations imply that

—

ha;ﬁ = {Ojﬂ} E’Y + Qaﬁﬁ37 EB,,@ - _Qgﬁa (12)

T he concern gf this Y’vork is with a vector field gg, a three-dimensional function of position on the surface_,’
¢ = ¢(0%t) = ¢°hs+¢>hs, where the (contravariant) tangential and (scalar) perpendicular components of ¢
are, like ﬁg, 53, functions of position on the surface and time. It is necessary to use the covariant derivatives
of the tangential components to express succinctly even the partial derivative of q_g From the above relations,

—

6.5 = (655 — 6°QG)ha + (6% + ¢° Qap) . (1.3)
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One notes the way in which the perpendicular component influences the tangential components of the deriva-
tive and wvice versa. It is the object of this paper to use the method of singular curves to find compatibility
conditions that relate the jumps in the third-order partial or covariant derivatives involving time of the
component functions of q_g to the jumps in their directional derivatives, those of first and second order having
been found in [6] and [7] and those of third order not involving time having been found in [8].

The method of singular curves deals with a function that is singular in the sense that it is smooth except
on an oriented smooth curve C; moving on S; and that for each ¢ it and all of its derivatives must have limits
with respect to ¢ and t at C; from the side to which C; is moving (the positive side of C;) and the side
from which C; is moving (the negative side of Cy). The difference between these limits is called the jump in
the function, denoted by square brackets, for example,

[¢?,@] = (¢?,@)7 - (¢?,@)+- (1.4)

The order of the singularity of the function is the lowest order of partial derivative that has a non-zero jump
at (Y, order zero meaning that the function itself has a jump. We shall need a formula for the jump of a
product in terms of the factors; this formula is as follows,

[AB] = AT [B] + [A]BT + [A][B]. (1.5)

For each t, we shall have occasion to require the unit tangent of Cy, m = d¥/ds, where s is the arc
length along C} according to its given orientation. We need also, in the tangent plane of S;, the unit normal
vector 7t = hsg X m, which is generally not the normal vector of the Frenet equations. Frequently we shall
have occasion to use the limits of directional derivatives of a singular function as the point of evaluation
approaches C; and the direction approaches that of m or 7; when it matters whether the limit is from the
positive or negative side of Cy, which one is meant will be made clear. When either is meant, then no
indication will be made, for instance, dq_ﬁ’/ dm will mean the limit of the directional derivative of (E in the
direction m at Cy from whichever side is required. In particular, Hadamard’s lemma states that

[d_ﬂ _dle]. (1.6)

dm dm

The general assumptions of this paper, following [6], [7], and [8], are that the position vector Z is singular
of order two at C;, meaning that Ei, f_ii, he8 and hap are continuous, but that the Christoffel symbols and
Q5 are not in general continuous across Cy, and that 5 is smooth except at Cy. In addition we assume of 5
that its limit at C; from each side vanishes, that is, 5‘ =0 and (E*’ = 0, the latter because of its vanishing
identically on the positive side of C;. In consequence [(ﬂ = 0 and all derivatives of (E on the positive side of
C have vanishing limits at Cy. This is a simplifying assumption of the present work as compared with [7] and
[8]. Since the aim of this work is to find formulas for jumps, terms that will ultimately vanish will contribute
nothing to those formulas. So long as they will not again be differentiated, they can be discarded; the
indication that some such terms have been discarded will be the use of the special equal sign, =, which first
appears in equation (4.4). Because many terms are products of (E or derivatives of (E in directions tangential
to the singular surface and geometrical quantities that may themselves have non-zero jumps across C, as
mentioned in the previous paragraph, it is important to note the precise effect of the simplifying assumption.
In equation (1.5), when A is a geometrical coefficient and B is gb, the jump in the product will vanish, the
vanishing jump in gb eliminating the first and third terms and the vanishing of qS ahead of C; eliminating the
second. Then by Hadamard’s lemma applied twice, the same thing happens with terms involving tangential
directional derivatives of ¢_5', e.g., with respect to m. No such term will therefore figure in the final results
nor in calculations after the specialization indicated by = has been made.

In the final section, a further simplification will be made that the jump in the normal derivative of the
vector field ¥, defined in equation (4.2), vanishes. The application of this simplifying assumption is indicated
by the use of ~.



Despite the lack of an assumption of continuity of the Christoffel symbols and €,z across C;, Cohen
and Wang [6] showed that

H(jﬁ}] m® =0 and  [Qug]m® = 0. (1.7)

It is necessary to recapitulate the relations among partial differentiation with respect to time, which will
be represented by the dot accent, and partial and covariant derivatives with respect to surface co-ordinates.
These have been carefully analyzed by Cohen and Wang [6], whose paper should be consulted for details.

2 Kinematics

Much depends upon the velocity vector field ¢ of the surface Sy in euclidean space. The so-called world
velocity of S; is then J = '+ €4, where €4 is the unit tangent vector of the ¢t-co-ordinate curve through each
point of space. To represent the directional derivative with respect to &, we shall use the dot accent. It

will be useful to clarify the use of dots. For vectors, dots are tied to the symbol; q_S"aB is (q?)\ 5 not q_S"a@.
«

For co-ordinates, dots are tied to the co-ordinate expression as a whole but not including differentiation

subscripts; ¢ means 7 not the Ev component of q_g And QSV)\ means (q57)|  not ¢_|7)\ and not (¢)‘7)\, which has

no meaning at all. For any tensor field on S;, we write

0p(0t) _ dé

5= = 2.1
¢ ot dw (2.1)
In particular, for Z(6% t) representing position on Sy, the velocity ©(6%1t) of S; is
dz 7(0%t .
g:_x_M:f, (2.2)

dw Ot
This velocity can be represented relative to the basis of the tangent space, v = v h 2 —|—’U3]_7:3. It is not assumed

continuous across Cy, but it is assumed to be smooth elsewhere. If L represents the surface velocity gradient,
o ® b, then from (1.2) we have

L =1 ,hy®h®+ L3, hs @ h*

S o o 2.3
= (v, — R0*)hr @ B + (V3 + Qaav™ )bz ®@ h*. (23)
We shall have occasion to expand both L%z and L4 in terms of 17 and 7
L%g = Lypymm®mg + Lypnm®ng + Lymnamg + Lppn®ng (2.4)
and
L?5 = L%, mg + L ng. (2.5)
From ) )
5 0°z 0%
hoa =5F—=7F7 =0Ua, 2.6
oro6e — o6v ot (26)
we have ]
ha = L ahx + L3 ks = (v)y, — Qv*)ha + (03, + Qaav™)hs. (2.7)
Then by the perpendicularity of Ea, Eg,
53 _ —LBQEQ _ _L3aﬁa _ _(,U?),a + ng\v)\)ﬁa. (28)
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If the singular curve C; has an intrinsic speed of propagation U normal to itself across the surface S,
then the world velocity of C; can be called Z = & + Un. This relationship among the vectors allows (see [6])
the directional derivative with respect to J to be written

;_do 46
6= UL (2.9)

While the convected displacement derivatives with respect to z have their uses, it has been clearly established
by the uses made in [2] and [3] of the derivatives with respect to oblique trajectories used in [1], that
compatibility conditions should be found with respect to such oblique trajectories although it is more trouble.
Accordingly, let there be added to Z' a tangential velocity, called ym in [6], to give the tangential velocity
T = Z+ ym. Then

d d d

dr  dz + Tam’
The normal-trajectory derivatives can of course be recovered from the more general expressions simply by
letting v vanish. Finally, since both z'and 7 are tangent to the singular surface swept out in space-time by
C}, there is a version of Hadamard’s lemma for directional derivatives with respect to each,

(2.10)

| _dgl _db  |dé| _dig| _ b (2.11)
dz dz dz’ dr dr dr’ '
When ¢ in (2.9) is hq, (1.2) produces
d}_io/ o )\ BT T
b A Qun’hs. 2.12
- h‘+U{a6}n hx +UQqgn”hs (2.12)
With (2.7) this is
@: DPatud M bps ha+ (LPo + UQaan™)h (2.13)
dz « Oéﬂ A « Ao 3 .
Then by the perpendicularity of Ea, Eg,
dﬁ?’ 3 B\ 3« a, B\L
i —(L?a + UQupn”)h* = —(L** + UQgn" )hy. (2.14)

Both of these formulas are needed later. The continuity of l_ia, hs at C, together with (2.11), implies

{LAQ +U {a)\ﬂ} nﬂ} =0, [LP4+UQusn"]=0. (2.15)
The former of these conditions and (1.7) have two consequences. One is that,
A
A a a3 —
[LYo]m®* =-U [{aﬁ” mon” =0, (2.16)
which will be needed later as [Ly,m] = [Lnm] = 0, and the other is that, when the operator on co-ordinates,
Do do® (A Al os
= — L, 2.1
o P +¢ < +U o n (2.17)
is defined, and when the analogous operator
D¢a d(ba by A )\ B )\ B D¢a D¢a
ar a0 ( U™ T ey ™ iz " Dm (2.18)
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is defined, they satisfy versions of Hadamard’s lemma,

D¢ _D¢°] _Dy*  [De"] _ Dl¢*] _ Dy .19
dz dz dz ’ dr dr dr '
Four derivatives derived by Cohen and Wang [6] and miscopied in [7] are needed later:
d dU
;ZA = ST L®gmamPmy + U {/\aﬁ} man’ + (Lag + Lgx)m”,
dn>\ . dU o 8 « 8
i —%mA—I-L BNaN n>\+U{)\6}nan ,
dm JU N (2.20)
:lr; = %n)‘ — LYgmomPm* —U {aﬁ} men?,
dn? au A
an” _ _dY L snanfn® — apB _ ([A 4 [Ny,
7 I+ L%snan’n U{aﬁ nn” — (L™ + L )ng
Using the expansion of L“g, one can write, from [7],
Dm? _(dU o Dol (AU N (2.21)
dz  \dm ) A dm e ’ '
. Two more formulas needed from [7] are
.. DLBa DLBa
L = — —~ ¥ 2.22
dz v Dn v (2.22)
and DL3 DL3
L3, = C U2+ I3, (2.23)

dz Dn

3 Commutation Relations
We recall from [6] the definition

~_~_~7_d2¢?_d_$7
(b\a,@ =0Q.ap ¢7’Y {0&6} = dhg dha dh,y {Oéﬂ}’ (3.1)

and from [8] the further definition

Gaps = G =3 { g =5 { g} = Gt

- 5,09%9045 - $|n,8 {52} - $|a9 {(fﬁ} .

Two commutation relations for directional derivatives for fixed time, which will be needed later, can be
deduced from expressions for ¢|,gs obtained by iterating

(3.2)

d¢ d¢

graqu:%@er%@n, (33)
in component form,
dp _ do do
_ = — o — Ng- .4
dhe  dm T a" (3:4)



A number of terms that arise can be simplified using the expression
for the second fundamental form, where Q,,,, = Qny by its symmetry. The expression obtained (from [§]
based on [6]) is not identical to but is equal to

37 g 27
m@a:(dd’ ddj . 6, ,db L, dF

amd " dmdn " Tamdn "2 am mn g

— 2anQmm%> MaMaMs

L T, Y ik
dedn+dmdm+ dm? ndn

anz Yam

+{ BF  dpdg G ,df (M d¢;’>

g s d
- 2Qmemn_ - Q anQmm 5 a a «
, el (U )7 ( (Mampns +mangms + namgms)
37 z 27 27 g (3.6)
d’¢ dp do d¢ d“¢ o do
et S 92 o2 27
+ { <almdn2 dm dm ,ude + ndmdn +an dm
- Qann d¢ - 2anan@ (manﬁné + nampng + nangm(;)
dm dn
B du dd d2¢ d2é
S - —2
+ { (dn3 dn dm Mdn dm 'udm dn
_ Q’unjﬁ — 2 Qnn j¢ Qan Z¢ }nangng,

where 7 is the geodesic curvature of Cy and p is the geodesic curvature of the orthogonal trajectories on Sy
of the family of curves C;, both defined in terms of covariant directional derivatives by

Dm® N Dn® N
Dm AT =m*, Dn R = umS. (3.7)
Because the quantity $|a55 is symmetric in the suffixes «, 3, and 9, the coefficients of m,ngns and nomgns
that actually appear in the computation must be equal to that of n,ngms, which appears above. That is,

d (&6 b _ (&4 d6)  (d6  db
dn \ dmdn ndm H dm? dn K dn2 Mdm

d$ d$
— QQ Qmmﬂnn - 2anﬂmn_
(2, + ad = .
d¢  dud A% ¢ 2 dé
— B ol SNl SR on2 22
dmdn? dmdm Mde + ndm dn e dm
dé do
- 2Q2 -5 2anan_a
™ dm ’ dn

which can be written more usefully as

d (@ A6\ _ &, &é &6
dn \ dmdn ndm " dmdn? 77dmdn Man

s dé
<277 Ko >dm M G
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letting
K= Qmenn - ann

(3.10)

be the Gaussian curvature of the surface. Likewise the coefficient of m,mgns that actually appears must be

equal to that of mongms and nomgms, which appears above;
d (d®¢  d¢ 2¢ dé
Bl el A 92 bl
dn (de Tan ten dmdn + Tam

e <Qmemnﬁ + QQ d¢>

dm ™ in

B§ dpds 6 ,dd <d2¢? d_¢3'>

P— —_— 2 _— -
dm?dn + dm dm + nde n dn dn? Mdm
g dg
— 2Qmemn_ — (2 anQmm )
dm (o + )dn

which can be written

dn

dm? n dn

— 2 _ — -
+en dm? H dmdn n dn?

" dmZ2dn
dn g 5 o .db
i (dm W?) dm (n +K)dn'

d <d2¢? d_<5> & I o B}

(3.11)

(3.12)

A pair of commutation relations involving differentiation with respect to time will be needed later. They

can be derived from the equality of partial derivatives,

Fé P
ot 908 90> — 008 Ot 96

and an expression derived in [6],

YL _ 3 3
{aﬂ} = L""Qup + LVQW - L aﬂg,

expanded in terms of mg and ng:

v DL 3 3
= L Qmm « Qnm a) — L « Qmm v Qnm v
{aﬁ} < D + (Qrmma + Ne) ( m” + n )) mg

Dn

Y
I <DL Io% + L3’Y(anma + anna) — LBQ(anm’Y + ann'Y)) TL/@

We shall need the coefficient of mg also expanded in terms of m, and ny:

dLm dLym,
< -m” + —n" + anmnﬂy - annm’y - 7’]anm’y + nLn,nnﬂy
dm dm

+ LP"Q,mnY — L3anmn7) M

ALy ALy
+ m7Y + N +NLpmm” + nLypn” + nLymn? — nLy,m”
dm dm

+ L3 mmY — L?’”Qmmm”) Ng-

7
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(3.14)

(3.15)

(3.16)



The left side of (3.13) is (baﬂ = (b‘a,g + ¢ { 5} + (b,y{ ﬁ} and can be expanded using (3.15) and

an expansion for ¢|a s available by partial differentiation with respect to ¢ of $|a 3, used in previous work on
geometrical compatibility conditions in [8]. We have (cf. (2.9))

q_g" = i_Ui ﬁ_ d_gg
o8 =\ 4z dn dmz  dn | e

25 db 2§ dg 47
+ <dmdn +TI%> (Mmang +namg) + (W B Nﬁ) n(mg}.
This differentiation requires the commutation relations (3.9) and (3.12) and results in the expression:
“g';*ﬁ - {dzdjzi? - Ud?f;in + 2ALnm —U )% - 2;[_7[7]1 d;ljgn v %f - dfi
— <U§—:l + Upn + QZ—Zn) j—i + (Un2 +UK — % - 2men> %}mamg
+ {dzii;fdn - Ud:jciﬂ + (ZU * Lmn & Lnm + U“) c(liirrg + (Linm + Lon = 2U) d:jgn
- %%ﬁmdﬁgﬂ + (Zn + Ud —2Un? — UK + Ly + Lonn + o u) jfl (3.18)
- (Z—ZL + Lin + an) Z—f}(mang +nemg)
+ {djiiiQ - UZ;Q; + <2d_ +3Up+ 2Lpn + 2an> d:jfn + ZLMZinqg - ‘udiii(fn
+ <2%n Z" + Ud— £ 30U + 2Lumnt) + 2L — 2L,mﬂ> j¢ U dd’}nanﬁ.
The right side of (3.13) can be obtained by partial differentiation of
Fa= m‘*{dﬁziz N Ud;ljfn + (Lonm = U”)% N Z_gz;li}
- (3.19)

(I g dé
o — an Lmn - Lnn_ ’
+n‘{dzdn Udn2+<d T +U”> dm dn}

from [7], where it is equation (4.22).



b by = {0 0B (L= U 52— S b
— 77{ d‘fjﬂ = UZ;? + <d_ + Lnm + Limn + Uu) % + Lnnj—f}mamﬁ
e A A F- R ey
+ ”{ dﬁfn - Ud;ljﬁn + (Lonm = U”)% - %%}”“W
* %{dizd:n Udfjf; * (Lo W% - %Zﬁ}m(m
+ M{ dfi — Uﬁf + <d_ + Lym + Lyn + Uu> % + Lnnj—f}man,@
YT T SVRVIRVAY S|
N ”{ dleQdfn - Ud;ljﬁn + (Lonm = U”)j_:; - Z_gz;li HaTp
+¢ { ﬁ}
(3.20)

where the partial derivatives of m,, and n, have been expressed in terms of their covariant derivatives, which
gives rise to terms containing Christoffel symbols, collected above into the final term.

When the two above expressions (3.18) and (3.20) for the equal partial derivatives are equated, and the
term common to both is dropped, the result as a whole is of no particular interest, but the equality of the
coefficients of nomg gives one commutation relation needed later and the equality of the coeflicients of ng
is the other commutation relation sought. (It could be separated into two relations, but they will be needed
together.)

The first equality is

d ( d?¢ ¢ dé dé

27 2 z
+77{ o _y Lo +(me—Un)ﬁ—ﬂ@}

dzdm dmdn

Be Bé dU 2¢ 2¢
= — Lmn an Y me Lnn - 2
dzdmdn Udm anz * (dm i i i U”) amz * ( i n) dmdn
au d2¢ 24 9 au \ d¢
-z 2 _9 K+ Loym Lon - 3.21
dm dn? dzdm+< +U Un" = UK+ L)+ Lont) + G0 ”)dm (3.21)
au
- Lmn an
. ( Wy L+ ) :
(90 V(g P00~ L7
am'" dm

dL
nn o



where (3.16) has been used. It simplifies to

—

B3é Bé a2
= me -
dmdzdn dzdmdn +( Un) dm dn
d (dU dp do
- = Lypm + Ly Lym — g
am <d b Lo U“) am N Un)
dn du dUu d(b
ap @ 3.22
+(d FUSE 200 UK + Lty + 7 u) o (3.22)
dm dm
Bé d2¢
= Trdman + Lmm = Un)gom,

The second equality (that of the coefficients of ng) is

dzdm Udmdn + (Lo = Un) g = G (™

d ( d?¢ ¢  [dU dé do

d ( d?¢ ¢ dé  dU d¢
il }a

dzdn dn2 dm dm "dn

B3 2¢ 26 Bé dU 2¢
— —_ - Lmn an
{dzdmdn "azdn Vazam ~ Vamane (d b +U“) dm?
2 2
d2¢ dU\ d2¢
+ (Lo Ln = 20m) 500+ (10U = 90 ) 305
d do
(B I oy U002 — UK — Lot — L+ Lt + Loty | 22
dz d dm
. (3.23)
dU d
dm dn
Bé Bé dU d2¢ 2¢
- 7 a9 2 > Lmn an 2Lnn—
+ {dz e Vas T (d Uk Lonn ) dmdn 2" 2
dU  d dé
+(2—n— —M—i—U— +2U0pun + 2Ly + 2Ly — 2Lpn it + Ly it ¢
dm dz dn dm
dU 5\ do
- (%”*U” ) %}”
dé dé DL,
* <%m7 + %nv) ( Dn (anma + anna) - L?’Q(anﬁﬂ + Q"”n7)>’

where (3.15) has been used.
A commutation relation in co-ordinates that is needed below can be derived by comparison of two equal

but different expressions, the ny terms in q_S:A from (4.2) and (4.3) in [7],

2¢ ¢ (dU d¢ dé do  d¢
dzan Ve T (d Lo+ Loan U“)d_ L gy = d = Y (3:24)
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Equating the coefficients of he and the R respectively gives

D D
dz Dn

Do~
Dm

d
— ¢ Qspn” (L** + UQINY) = (Uu + dU + Lonn + an>
dU Do~
- 5 Lnn
( dn * > Dn
D2¢a
Dnd

+

- ¢7(L3 + UQ2n)Q5n°,

or more usefully

D2¢>  D2p> dU D¢®  [dU Do
Dndz  dzDn + (UM—'_ dm + + ) Dm * <dn * ) Dn (3.25)

+¢TLEQNS — ¢ sn L,

and
?¢® g U dg?
— Q% B L3a Qa v Lmn an >
dz dn O (L + Ulayn?) = <UM+d * * )dm
du de?
— = +L,,) =
<dn * ) dn
d2¢ 3(713 o
dnas &L+ UQN M) Qasn’,
or more usefully
d?¢3 d%¢? dau de? au de?
dndz dzdn <U,u—|— dm + + ) dm + (dn + > dn (3:26)

4 Directional Derivatives

Since the goal is co-ordinate expressions, it is necessary to introduce co-ordinates for quantities other than
¢ = ¢“ho + ¢>hs3, ¢ g, L, m, i1, and ¥. The first directional derivatives are

d¢ (D¢ o 5\ do® . 5\ »
i = (o 1 ) o (G 40’ B )
d¢ (Do o 5 do® _ '
%_<Dn — ¢*Q%n )h +(d +¢Qaﬂn)h3-
The jump in the normal directional derivative of 5 is defined to be
= d Do® d¢? -
= [dﬂ - ([ Dﬂ - W‘Q’%“”ﬂ) o Q di] " [d’agaf’”ﬂ) o (+2)
If we let Do s
R N L B (4.3

we can note that, while 1;“, ¥3, are not the co-ordinates of )%, hence the use of different letters, they are equal
to those co-ordinates on account of the simplifying assumption on ¢. On account of this simplification, the
first-order compatibility conditions (from [6]) become just

I I N o e P (4.4)
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The second-order directional derivatives are,

jinji = <g2n(f: — (;W&'lngg‘m’gm‘S — Q%ngﬁ — ¢3ll))—(:ngm’3 — 77(1)39271’3) EA
+ <2%Qaﬁmﬁ + ¢a%m’8 + 0o Qapn” + f;f:z — ¢39§9a5m’3m5> hs,
%f = (l;if: — ¢, 5000’ — Z%anﬂ — ¢3DD—?§nﬁ — u¢393m5> B
+ (2 %(f Qapn” + ¢“%nﬁ + ¢ Qagm” + Cgﬁ — ¢3ana5nﬂn5> hs, (4.5)

dQQZ D2¢A A6 B d¢53 B d¢3 N
dmdn - <DmDn = @y 5min” — %Qﬁn B %Q’Bm

DY . D¢ D¢™
B2 8 3aAmB s O onf
O o e m >h>‘+<DnQa’8m T D s

+ % —n" — nPp“Q, + —— — Q%0 T | hs.
10) Dmn NP Qapm T dn ¢°Qp Qapgm’n 3
Again let
z |d2¢  dé - 8
X LW pog | = [Glagn®n], (4.6)

and also, in co-ordinates,

= D2¢A D(ﬁ)\ D2¢)\ ~ d2¢3 d¢3 d2¢3
A= = = 3 a2 = .
G R A v 7 N o
Again, these are not in general the co-ordinates of )%;
: 7 d¢? DO .
x= 9 - [¢09059An’8n7] -2 iQ)‘nV — P —2n7| | ks
K dn v Dn (4 8)

Do* o0 DQags z o -
(2| | + [ #7252 + 0 — 0300 )

Under the present simplifying assumption on q;, the second-order compatibility conditions are as follows:

first the geometric,
.- Dy =

[Dfus] = = mams + —w(manﬁ +namg) + 9 nang,

lap Dm (4.9)

e di? = '

[¢3a ] = —Uwgmam;a + i(mang + namg) + w3nan5,

|3 dm.

then the kinematic,
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Dm  dm
Do Do ~ D& Lo Do
(BB i (B 1
_— ® AU
[¢5] = (—U% - d—¢3)m
a7 a0 06? (4.10)
+ (F — V5 dm Ui/Jg |: nn%])n)\y
[$°] = —ZUdea + 20Uy Dwa + U2 — KC;—U + UL,m) %fj] :
o di d dU de?
3 273

The formulas (4.10) were obtained by equating expressions known to be equal in the limit at C; and
then taking jumps in those equations. Many terms do not vanish until jumps are taken in them, as can be
seen in [7]. It will simplify further work substantially if terms whose jumps will vanish are neglected because
when jumps are taken—as they will be—their jumps will vanish even when multiplied by some geometrical
quantity whose jump does not vanish. It is therefore as though the above equations had come from the
following statements, which are not themselves true but lead to true statements when jumps are taken.
They are needed in what follows.

52 (B v BBt B - D),
2, 2 0 2 o J
(b TDapn Vb e,
+{%+U#+Lmn+an} %f: +Lnn%f>nx,
5= (L0 0D L oY,

d2¢3 d2¢3 d2¢3
* <drdn " Vamdn v dn?

dUu d 3 d 3

¢o/ ) D2¢o{ 5 D2¢o{ N D2¢o{ 2U D2¢a + 2U D2¢o{ N U2 D2¢a
= 5wt m "Dm D Dn?
d Dop®
- 1—7Un+7me+ULmn+Uan+U2 Ly Do
dr dm Dm
dUu Dg¢® o (D#° D¢? D¢?
_<d_+UL"”) Dn _2L‘5<d7 “UDn "7 Dm )
. d2 ¢3 d2¢3 d2 ¢3 d2 ¢3 d2 ¢3 d2 ¢3
3 - _ 2 2 _ 2 2 2
= Y amam Y amz Y aran T  aman Y e
dy 2, dg?
dr d dm
dU d¢3
— | —+ULp, | —.
<d * ) dn

13



Similarly the first-order kinematic compatibility conditions (4.4) are based on larger equations that will
be stated in an untrue form needed for substitution later (from [7]), where it is understood that, while no
terms have been discarded as they have been above, jumps need to be taken to make the statements true.

go = D00 DO DO pag,
_ 4’ d¢® . d¢’ '
~ar  Vam an

¢3

The third-order directional derivatives not involving time are obtained by differentiating the expressions
n (4.5):

Bé D3¢ D¢° N DQ,; mn DQYmS
dm?3 - <Dm3 o 3DTn anmnﬂﬁmﬁ ¢6 - Q ¢7Q75m5 D[STn
d?¢3 d¢? DQ 3 .D2QemB |
_ %Y ¥ N, 60a, B _ 37 "B "
3dm2 5m 3d Dm + ¢ Qany(sm m Qﬂm ¢ D2 ha
(4.13)
DQ(;S“ 3 Do~ DQagmﬁ - o m. 5 3
o D?*Qupm?  d3¢? e ., DQym R
+ ¢~ an2 +oy =30 A0 m” — 3¢° meﬂ hs.
#Bg [ D3¢ Dy gnfagm®  D*¢*Qgn®  2gd o dg® DQgm”
dm2dn ~ \ Dm2Dn Dm Dm? dmdn g dn Dm
D& DO n -
- D—ngnangmﬁ — %ngﬁ + ¢BQ‘3’anMm7ngﬁ> ha
(4.14)
2 (e} « B8 2 ha B
10 D¢ DQggm D*¢*Qapn o
" <2DmD ’Bmﬁ + Dn Dm * Dm? - (bPYQWané méﬂaﬁmﬁ
B dPPQIn 0 pmP  dePQonn 5 de® ., 5\ 7
dm2dn dm  dm Qagm” — %Qnm”Qa,gm hs
Bé D3¢ D¢* 5 DQy Q0P 42
_ _ [} YA Y _ o,y
dm dn? <DmDn2 Dm Lapllyn"n? = ¢ Dm 2dmdn97n
diBDQam dg® DQgnY 5 D*QonY _ d?¢ QG
dn Dm dm Dn Dm Dn dn?
D¢’ DR
+ ¢* Q0 Qs n10GmP — 2D—¢ann"ng _ o Dl Qm )ha
n Dn 415
D2¢a 5 N 5 d¢53 5 ( : )
+ (WQaﬁm — ¢ Q)\nQ,ynnnWQ(ygm — 2%9,},7’7}79&5777/
DQenY d3¢? dg3 anQamﬂnﬁ
X gt By o) B4 _ QaQ Tn sy P
O Ses™ g T g lasn T =0 dm
D?¢> Do DQ 571’3 Do DQ) gnﬁ D2%Q) 571’3 -
2 Qapn’ +2 = = « = h:
+ Dm Dn i Dn  Dm Dm  Dn Dm Dn 3
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DQ,),(;TL Qanﬁ

B3¢ D3¢~ D¢)‘Q>\59;"n5n7 D7 Sy,
a? ( Dn¥ T Dn b
4400 D5 D20

d2¢3 o
yn —¢ Dn?

d dn Dn

D" D™ Doy
+<3 O g + 329 ik

+ ¢ Q1,5 0’ anﬂ> ha

(4.16)

DQQQQTL’B
Dn?

+¢° — M0, QN Qo n”

Dn? Dn Dn

R S d¢3 DQYnY .
_ Y 3 ol B
s i Q n Qagn —¢ D Qapn” |3

Using the notation )% for [qg"a@ananﬂ n%], which is available as the coefficient of nangns in the expression
(3.6) for ¢|qps, we also need

Dn3  dn Dm 'qu Dn 3un Dm

+ 2 —|— 2u¢” RY, 5m7n5]

D

3 ) (4.17)

o | D, D" n 2 Do

Dn3 FDmbDn " Dn

and
z d3¢53 d,U d¢53 d2¢53 d¢3 d¢53 d3¢3 d2¢3 d¢53
3 _ s A _ Tk ) - Ehuniy 4.1

v [ dn3  dn dm 3”dm dn 311 am an } { dn3 3'udm an T } (4.18)

With the notation needed all in place, the third-order geometric conditions of [8] under the simplifying
assumption of this work can now be written out:

. dn -~ Dy

D21Z))\

+ Dm?

( — P — 7711~JA> (mamgns + mangms + namgms)

+ —¢R)‘l,wm”n7} (2mangns + nampns) (4.19)
Dn

)\ Dwk

D (Mmangns + namgns + nangms)

KD—(b} MaMans + w NaNgNs

and

dn dy?
(b‘a,% ( dm -3 d—> MaMgMs
d

+ ( dni — 0?7 - n<53> (mamgns + mangms + namgms)
(4.20)
i 8
+ < dlfn + 277 - ) (mangn(; + namgns + nan/jmé)
d¢? >
[ dq; ] MaMgns + 1/1 NaNgNs.
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Directional derivatives involving time will be needed. From (4.5), (4.17), and (4.18) in

d2¢_§ _ D2¢a
dzdm ~— \dzDm

d(b
e —¢

3
an¢3§2gn’8 d¢ L3a Ucciliﬂa ’Y>

3 DQg ,8 U ¢3 anﬁ

d2¢3
+ ( — *QmP L3 — Up*QgmP Qayn”

dzdm

(0%

D¢
Q. &
dz ’Bm +é

+ an (baQaﬂnﬁ +

+

Qaﬁ 6
dz

D¢
Dm Dm

3
— ¢ P L3 — U 50’ Qen® — j

d¢

dZ(E _ D2¢a
dzdn ~ \dzDn

dU 30« 30«
+-o—9 QM + Loymd®Qgm° — -

d2¢3
+ ( - *QnP L3, — Ug*QnP Qo n™ +

dz dn
- %(ﬁygv,@mﬁ - anqwﬂfyﬁm’@ + %¢ at U

@G _ [ Do

dz2 | dz?
3

d¢ L3a 2UiQa A

— U%¢7Q,5n° Q50> — 2—- -

3a
—¢3<DLZ + DU U(ﬂJanm) gm*)}ha

dz

dm

2
+ { i GPL3 LY —U¢PQn° L% — Ug*Qn L3,

dz?

— U24%Q5n° Q0> + 2Dd¢’ D¢

2
+Ud

dz dz

Using the general formula, from (2.13) and (2.14),

d(A®he + Bhs) [ DA®
dz dz

dB) -
+ {Aa(L3a + UQran?) + E}hg,

— ¢ smP L3 — U, gmP g0’

Z_U¢agaﬁn,3

Do
L3a—|-U 9 Qasn >h3

Qgn’ —
3
L3a U%Qa 7) o

dz

Dqsa

— VLA L3 — U Qen® L3 — U Q40 L2,

Qagnﬂ

DL3, DUSQ, dU -
+¢o{ < -+ AnA—U(d——f—an)QQ)\mA)}h&

— B(L?* + Uanﬂ)}Ea

[7] come:

¢3 5,3

(4.21)

(4.22)

(4.23)

(4.24)

further partly temporal directional derivatives can be calculated from (4.5). Because these expressions will
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not be differentiated again, terms in ¢ and ¢ will be dropped.

37 3 i Y 2
T { O P P agm 2g—¢%mﬁ (L3 + UQgn?)
m

dzdm? | dz Dm? dz
d2¢3 d2¢3 d¢3 DQOt
_ v _ 3 o,y ¥ .y
2dzdm YT dm gz L U - dz <Dmm M n)
3 DO -
_ 90 (AU oy 25 0o ) L
dm \dm 7 dz v (4.25)
d3¢3 d¢3 0 8 d¢3 5 5 :
_ _ _r vy « «
{dzdm2 7 —QapQm 2dea7m (L** +UQFn")
D2¢o{ D2¢a D¢o¢ DQ
g 3 g =ty Y v
+2dzD Qaym —|—D (L0 +UQqyn) + 7 Dy ™ + nNQayn
Do~ DQ, -
+2 D(fn <%an7 + #m” + anﬂavn”*) }h3
d¢ [ D D¢ o 5 D¢ o« o0
dzdmdn {dz DmDn  dz anégﬁmﬁ - Dn Qyom? (L2 + UQ3n?)
‘D¢ 3a a0 d2¢3 vy _ d2¢3
D e (12 + UQn%) = g Qm’ = 4
dg ( DQ§ 2¢>3 30 apy
d¢3 au a, Y DQ’? o o,y
*‘3;;(3;f1ﬂ” Tz M by
3 DO -
d¢ QO‘ T+ " mY + Ly Q0 ) She
dn dm v dz v (4.26)
B dg? oA sa g ’
+ dzdmdn  dz el OQ’G dn Qoo (L +UQ )
d¢3 N 3 D2¢a D2¢a
_ % 0, a 0%pB Q. B Q. B
mQ (LU CAe )+dsz pm +dan pm
D¢~ [ DS, D2gp>
T (D—mm7 B ”Qf’”mw) ~ Do Lot U™

Dm z

D¢ (dU 5 DQay -
— g E— anQa v hs.
+ Dn ( dm flayn” + d * " s

D¢ (dU DA,
B (%ﬁw”““74“+““”m0
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B[ D3 DY s s DO s o s
{dan2 - Q,5n7Q5n —2D—nQ%3n (L°*+UQgn°)

dzdn?
d2¢3 d2¢3 d¢3 (138
— 7 QopT — L3a Qa o y nY Qa ¥
dzdn v dn? Gz E AU )= dz ( Dn T >
3 DO -
1920 (WU oy - 2500 4 g 00m0 )
dn \.dm dz v (4.27)
B A o o g de 3, 170 '
" {dz a2 gy Qoo nn” = 27 Qg (L 4 UQn?)
DQ(;S” D2¢5 D¢™ (D)
Y 3 v Y
+2d o Qoyn” + — D2 (L7 +UQayn") + 7 < D + 11 Qaym” )

Do¢® v DSy, v\ 4p
2 o <dea7m 7 N7 + LpmSQaym hs.

From (4.22) differentiated again and with the usual simplifications,

dz2Dn  dzdn dn dz dz dn 7n

d?¢° d¢> D dg? dU .
Qo v o (& 4 L o
Vi U UGy (d + ) )h

¢ . (D% & 5, d¢’ DL dUdg’ ),
dz2dn

2 13 5 5
o, % 5+ U%QM7 (L2 + Un*Q$) ha
dz dn Dn (4.28)
3 3 215 ) 3 ) )
L d’¢ +D¢L35 D¢’ DL°s @D(ﬁQMn”
dz2dn  dzDn Dn dz dz Dn
D2¢° D¢? DQ
LU o ¢° DQs,

Qs + U n’ +U (bé(z dU+L m? |h
dzDn " Dn  dz Dn O\ dm ©m 3

D2¢a d¢53 d¢53 N
_ _L3a Qo/ o L3a )\Qa .
i (dz Dn  dn Uan >( +Unar)hs

5 Partial Derivatives

We take the second covariant derivative (3.1) of the vector field from [8],

5|a5=<5, ¢5{ ﬂ}

= (9 — 7 Qa2 — 65,00 — 6501 — 504 ) Fin (5.1)
+ (808 + (6" Qa) s + ¢?aﬁ — ¢ Q) Q5)hs.
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From this we obtain directly, using (2.7) and (2.8) above,

%7 =@, — 07 0p0S — 67 0p00 — 67 Qp00
- ¢|5L3a967 - (¢6955)\7L3a + ¢f57La5 - ¢”L°‘(;Qaﬁﬂfy
— 905 — 9%05 — 65,05 — 64,05 - day,
— OO — 0, L+ S L0, — 6L — (6708), L% ha (5.2)
+ (003, L% — 67 L2505 + 50 + 65y
+ B s + 67 Qo + 0 Quply + 0Dy
— L% — (P, L + 8, — 00, — 6P, — 6° Q2500 s,
In order to be able to compare this expression with one based on directional derivatives, three transformations

need to be applied to it. All of the dotted ¢ terms except the two that formulas are sought for, (;5“’;37 and

% must be replaced. This replacement is done for first derivatives by using the expressions (4.12) and,
where an expression is a second derivative, using the expressions from which the second-order kinematic
compatibility conditions come when jumps are taken, (4.11). The factor (b_‘“ﬁ can be dealt with exactly like
qb% because the difference between the two expressions, according to equation (8.30) of [6], is ¢© times a

geometrical coefficient and so can be ignored here since its jump will vanish. The second transformation is
to expand covariant derivatives in terms of directional derivatives using formulas

Do™ Do% d 3 3
¢5‘5 ¢ mg + D¢ ng, ¢53 :img—i— d¢ ng, (5.3)

and the same iterated and similar formulas applied to Qf, L3> and Le,. The third transformation is to

insert components of the tangent and normal vectors 7 and 7 in each term except ¢| By and ¢\3ﬂv' This can
be done by replacing each subscript 8 (or = respectively) by a dummy suffix, say €, and multiplying the

term by d5 in the form m*mg + nng (equation (6.25) of [6]). The result of these expansions is a substantial
expression, which is not worth looking at and which was formed by the Mathematica package ‘Ricci’ of Jack
Lee running on a NeXT computer. (Without this combination of facilities, these calculations would not have
been completed.)
We take the second partial derivative of gg with respect to time from [7],
é': (éa + zé'yLa’y + ¢7Lo¢fy + ¢)\L'y)\LaPY _ ¢7L37L3a
o 2¢3L3a o ¢3L3a _ ¢3L3wLa’y)ﬁa (54)
+(¢° + 207 L3, + ¢V, — QPLIVL, + MLV AL, )R,
and differentiate it partially with respect to #* to obtain
G x = (G + 207, L + 287L  + S L, + $7L% 4+ SHL75L,
ﬁbéLﬂyé\)\La'y T ¢ L’YELO/ ¢’)’ L3 L304 ¢’YL3’YML304 _ ¢’YL3’YL3(1‘>\
_ 2¢'5,3AL3a _ 2¢3L?;\1 _ ¢7)\L3a _ ¢3L3a|)\ _ ¢73AL3’YLO[»Y _ ¢3L3’Y|)\La7 _ ¢3L37La’y‘>\)ﬁa
— (2L + ¢TLE, 4+ GO LSLE, 4 6% — QPLPVLP)O% ha (5.5)
(¢a + 2¢7La + ¢7La + ¢6L75La7 _ ¢WL37L301 o 2¢3L3a o ¢3L3a _ ¢3L37La’y)ﬂa>\53
(2¢’Y L3 + 2¢7L37\>\ + ¢’Y L3 + ¢’YL37M + ¢?}\LW6L3W + ¢6L76|)\L3fy + ¢6L75L37|)\
+ ¢3A o (b?ALs’YLs ¢3L3’YL3 ¢3L37L37M)ﬁ3.
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Since this expression will not again be differentiated, it is permissible to simplify it by the elimination of
terms containing ¢ and ¢3, of which there are a goodly number. For comparison with the correbpondlng
expression based on directional derivatives, as above the dotted ¢ terms except those sought, gb and ¢3 5\
need to be replaced and the covariant derivatives expanded in directional derivatives. The result of this
expansion is again a substantial expression, which exists only in the format of ‘Ricci’.

The third of the partial derivatives needed is obtained by differentiating the expression (5.4) with respect
to time to obtain,

&= (% + 20717, 4 2L + L + 7L 4 PLL,
QLI+ GLTALO = §TLP LY — VL L3 — VL3 L3 — 267 L3
- 2¢3L3a _ ¢'53I'J3a - ¢3E3a _ ¢53L3’7L“,Y - ¢3L37LOLW - ¢3L37L“7)i_ia
+ (4207 L3, + ¢TLP, — QPLIVLP, + QMLTALR) (— L2 hy) 56)
+ (¢ +207L0 + VL7 + GPLONLS, — VLA LY — 24P L — §PL¥ — P LIVLY )L sha
+ (¢6 +2¢7L‘5 +¢7L5 + ¢AL7>\L6 _ ¢7L3 L3 _ 94313 — ¢33 ¢3L37L6»Y)L3553
+ (¢3 - ¢3L37L37 _ ¢3L37L3W - ¢3L37L37 + 2¢7L3W + 3&7['/37
+ VLR, + GALALE, + GMLALE + ML ALP s,

Again terms containing ¢® and ¢® can legitimately be removed to give the simplified form

6= (6 +3§7L, +3¢7E%, 4 3P LIAL*, — 3$TL3, L
—3¢°L3 — 3P L3 — 33 LPVL™.) ) g, (5.7)
+(¢° =33 L3VL3, + 3¢TLE, 4+ 367 L2, + 3 LV \L2, ) hs.
This expression then requires the same expansion as the previous partial derivative to produce an expression
for comparison with the directional-derivative version of the same quantity. This has been done in ‘Ricci’.
6 Compatibility Conditions

The expression (3.18) for (E‘a,g in terms of directional derivatives, with each vectorial expression expanded into
co-ordinates by the formulas stated in section two or derived in section four and the now usual simplification,
can be compared piece by piece with the same quantity computed in the fifth section to give expressions for

(b%v and ¢f’m, which appear in that form in the section-five formulas. The resulting expressions, true only

when jumps are taken, are:
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D2¢a U D3¢a dU D2¢a D2¢a
=" Dz " Umeon  2dmDmbDn "dzDn

d Do de?
+ (KU+n2U—d—Z—2anm> ¢ +nL3ai}m5m7

Dn dn
N D3¢o{ U D3¢o{ dU D2¢o{ N D2¢6
dz Dm Dn DmDn? dm Dn?2 Dm Dn
D2ge U D¢
me Lnn - 2 - 5 Lmn an
(Lo + UU)DmDn n(dm+ + ) Dn

+ {2Um’n (210§ — 2250 L~ D¢ M — pL3® dg"
AeS25 208+ )\}Dn + ( uL>%) MmN,y

dn 6.1)
3 L 3 2 1« 2 16 '
{ D> ¢ D>¢ dU D=¢ o D9

dz Dm Dn Dm Dn2  dm Dn? SDm Dn

D?¢® dU Do¢*

A d 3
+ {UMn (208 — Qs Q) + pLy }— + (M — nﬁ“)%}ngm

D3¢a D3¢a dU D2¢oz
+{dan2 Dn3 +( am TR + )

Dm Dn
D2¢O‘ D2¢6 Dqﬁa ¢6 d¢53
2Lnn — L~ —u? — ul%s—— + (2N® + pL3*)—
+ Dn? s R U —pL%s -+ (2N 4 pl™) = }nanm
where DI DQ“ DQ“
M® = — Lyym3m” — LpmQn’ — P+ U—Lnf,
Dm dz Dm (6.2)
DL3 DQg DQS '
Ne = — LyinQ8m” — Ly 5n® — —L0f 4 U2,
n B B dz

both vanish, as was shown in [7], and
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?; . Ud2¢3_ d3¢3 _Qd_U d2¢3 B d2¢3
1By dn? dm? dn dm dm dn ndzdn

3 Do%
+ (KU+ n°U — j—z ~ 2anm) o _ nL?, ¢ }mgm,y

dn * Dn
N d3¢3 U d3¢3 B d_Ud2¢3
dzdm dn dmdn? dm dn?

B2 U g8

D (67
- (m® Pag — Mo+ uLP0) 22 }mgn,Y

Dn
3 43 3 43 2 13
€o” At dUd¢ (6.3)
dzdm dn dmdn? dm dn?
d?¢3 dU d¢?

D (e}
+ (m‘st; — M, +nL3,) Dq; }ngmfy

33 3 .3 293
+{ P +<2d_U+3HU+szn+anm) o

dz dn? dn3 dm dm dn
d2¢3 9 d¢3
2Ly — — U ——
+ " dn? H dn
Do~
+ (2(n° Pas — Na) — pL?,) B }ngn,y,
where DL DL
Pos = Qse L0 — Qaelfs — ma—2 — ng—-2 + L35. 4
) 5 6mDmnDn+a‘6 (6.4)

To see that P,s = 0 one combines its directional derivatives of L35 as L35|a and then expands the covariant
derivatives in terms of the definition of L3, (2.3). The whole expression then vanishes because v* is a scalar
and Qqg5, Qyq(3, and Qavﬂg are symmetric in « and .

When jumps are taken, a further simplification comes from using (4.72) and (4.18);

—— : d*p° AU d® dy?
3 - 3 _ _9 - Fr _ 7
[ ‘57} B {UU¢ Udm2 2dm dm " dz

d dg3
+ [(KU—H]QU — d_z — 277me> %} }m,gmAY

LGP AP dU =z
- - me Lnn -2
{ dzdm v dm dmw i [( m )

d2 ¢3
dmdn }

dm

a3, dU 24P
S 2 o Lmn an
+{ dz Uy + {(dm * * > dmdn]
d2¢3 3 D¢a
3 Do
+ L7 Dn (=nmpmey + pmany + nngmy — pngny).

3
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The tangential formula is not subject to the P, simplification, but only (4.71) and (4.17). So

— . =, D¥*p* _dU Dy®  Dy”
[ |f37} —{HU¢ _UDm2 _2% Dm " dz

dn D¢®
2rr 4N Lo
+ [(KU +n°U P 277me) D } }mgm,y

2,7 :a ~ 2 16
+{D¢ DY _@~a_{La5D¢}

dzDm ~ Dm  dm DmD
D2¢> dU Do”
mm nn - 5 Lmn an
n [@ ) an)DmDn} . [(dm Lt ) a ]
5, € pa « qu\
+ [(Um’n°R s + L A)D—n (many + ngms) (6.6)
€ (e D¢)\
+ Um°n® [R MEE] mgn.
Dy 3 dU D2
D2¢oz N D2¢6 N D¢6
+2 [Ln,n—Dn2 } - {L S 2 } — M [L S } }nﬁny
3a d¢3
+ | L an (mmpmy — pmpgny, — nngmey + pngn.y ).

For the remaining formulas, it is necessary to have ¢ , in terms of directional derivatives. This is

obtained by partial differentiation with respect to t of 5 \» which has already been used above. From (3.19),
performing the partial differentiation using z and n, the result is
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-, d d 24 a4 dé  dU d¢
ox = (d_ - U%){dzdm = U gmdn + Emm = Um0 = %%}m*

d d d2¢ 26 [dU do dé
+<E—U%>{ d’—U—¢+<—+an+Lmn+Uu>—¢+Lm—¢}m

dzdn dn? dm dm dn
2 7 2 7 g g
+{ d?¢ U d?¢ U)d(b dUd(b}(dmA Udnm)

+ (me -

dzdm dmdn " dm dmdn dz dn

S 3 B}
L0 gl (Bt L+ U ) 22 4 1, 22 (Do
dzdn dn?

dm dm dn dz dn
B¢ AU d2¢ B3¢ d dé
{szdm dz dmdn dzdmdn * dz( n) dm

+ (Lym — Un)

dzdm  dzdmdn dmdzdn
d ( d*¢ d2¢
B %{dzdm B Udmdn + (Lnm = Un) o = __}mA

{ Bé AU &4 - Bo d (dU ) do

¢  dPU dé dU d%ﬁ}
m

dz%2dn  dz dn? dzdn? = dz dm

dU d2¢  dL,, do d2¢

dm

dm dzdm dz dn " dzdn
- %{dfjn = U% + (Z—Z +an+Lmn+Uu) ;l—j:l +Lnn%}n>\
+ {dﬂfjl - U%+ <% + Lnm + Linn + UM) % +Lnnj—f} <—(UM+ %)m,\ +Lnnn,\).

(6.7)
In the above expression, lines three and six can be replaced at a stroke using the pair of commutation
relations (3.23). The expression can be simplified by the removal of terms involving differentiation of ¢ only
in the directions m, Z, or a combination of them;
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s (AU &6 A6 LU A dU 8§
o dz dmdn dzdmdn  dzdm dn  dm dzdn
B¢ dU ¢ B¢ dLn, dd d2¢
dz2dn  dz dn? dzdn? dz dn dzdn

¢ dU dé du

dmdn  dmdn

d2¢ 2¢ d* dU
n dm

dzdn dn? "dn
B3¢ B3¢ 2¢ d2¢ d2¢
{ (dzdmdn Udmdn2 Un dmdn * dmdn i dmdn (6.8)
_dUde | dg_  dg_dU g\ |
dmdn2 ™ TP T dm dn
26 d*¢ d¢
- (dzdn U T Ln%)““
¢ ¢ 4> 24 ¢
5 a 2 2Lmn 2an
+ <dzdn2 Ud 32Uk P amdn dmdn dmdn
AU d*¢ ¢ ,dé  dU d
dm dmdn " dn2 dn dm dn ™
DL, 3 . W ) 4@
< D (Qnnmx + Qunnn) — LA (Qnm” + Qppn?) dnnAY .

LAY dé
The last line, which is gbﬁ{)’\yd}n‘s with the terms in —¢ discarded, can be written as

dn dn
. (6.9)
AL —uL @n
dn HLinm an A
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The two versions of qz_SZA, (5.5) and (6.8) as modified by (6.9), can now be compared component by
component to produce the formulas for ¢|a)\ and q53>\ The only rule needed to produce compatibility between
(5.5) and (6.8) is the expansion of the second fundamental form by (3.5) in (5.5). Again this comparison
was done in ‘Ricci’; the result being:

m Dn Dm Dn dz Dm Dn dm dz Dn

- (% —2U%n + 2U Ly, + UL,m> DDnqun +2UL% DL:L ﬁn
- (Un <% + Lyn + an) - d‘dem - %(me + Lnn)

+ Up( Ly, — Lnn) — Udgr’;” + U L3 — UanL?’n) %qf
+ (2UDDL:f + 23—ZL“5 +2UQm, L3 — 2UQ5m L? 5

+ 2U%K (mgn® — m“n5)> %q:j — 2UM°‘CZLZS]

+ 1 [UQ D;f: dlzj‘f;n - 2Udljjf:2 — (Cfi—g + 3UL,m> % (6.10)

e N
—3U (% +Up+ Ly + an> Dl_;qun

22 = - 7 Lmn an Lnn ? Lnn
# (0% (5) + (U G ) ot L)+ Ean)? + )
DL~ .
+ (2U Dnﬂ - La,g + La,yL’Yﬁ - 2LaﬁLnn
D¢P
3 [e% 3 L
+ 3Uan7L — BUQWnVL 5) Dn
. DI3*  DL3® dg®
L3a . _ Na L3ﬁLa _r
+( 2. TUTpa UM 5) dn]’

where (3.5) and (3.10) have been used to compress. Using the facts that M* and N“ vanish, (2.22), (4.33),
(4.71), and (4.17), the above formula simplifies to
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ol . dU =, ,Dy° D2y dU D
[(bu} _mA{QUdmw tU Dm _2Udsz _2dm dz
dU D2¢oz D2¢ﬂ
- — =2 2 2 me Lnn 2 La
{(dz Uin+2U i ')DmDn]+ U[ ﬂDmDn}
) d2U dU

du
Lmn an - - me Lnn
+ {(Un( + + T dm( + L)

dm
dLnn
+Uu(Lppym — Lpn) — U 7 -

Do%
+ UanLgm - UanLgn) ¢ :|
n Dn

DL®s  _dU N N
+ [<2U D 2L 5+ 20Qm, L* —2UQm L% 5

8
+ 2U%K (mgn® — mo‘ng)) %} }

s D% Dge [(dU D2ge

2« _ _ - - v

+ nA{U LA dz? 2U dz {( dz + 3ULnn> Dn? ]
D2¢o¢ N D2¢ﬁ

"z Dn} —2 [L Pz Dn]

(6.11)

D2¢P
P Dn2

du D?¢e
- Lmn an
U {(dm + + ) DmDn}

(Lo + L) <Uu - %) - (%)2 + (Lnn)? + L'nn}%é:}

w2 L] v2 o

+

+ KZU 5 = L% + L% L7 = 2L s Lun

4 D¢’
+3UQ 0, L** — 3UQSn " L? ,3) D—“H }

With the same compression by (3.5), the other formula is
2 43 343 343 243
dU d*¢ 5 d°¢ o d>¢ 2dquS

.
= 2 _ —_ - I —
[¢,>\} A [ v dm dn? dm dn? dz dm dn dm dzdn
2 43 Do
— d—U—2U277+2Ume+ULnn d¢ _QUMQ ¢
dmdn Dn

dz
) d?U dU

au
N Lmn an - - 5 me Lnn
+(Ur]< + Lemn o+ dzdm dm( + )
do®

dm
dLnn 3 3
dn dn
d3 ¢3 d3 ¢3 d3 ¢3 dU d2 ¢3
2 —9 = Lnn _
tm {U dn3 + dz?%dn Udz dn? < dz +3U dn?

(6.12)

d?¢? dUu d?¢?
d¢?

AN dU :
2,2 e = 2 -

. 3 3 “
(it 2 Pl sy, s v im, () ) P,
dm Dn

dz Dn
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which simplifies using (1.72), (2.16), (2.23), (4.34), (4.72), and (4.18) to
1 dU = 40 PP dU dP
5= 2U— + U — -2 2—
[qﬁ)\} m)\{ Udmd} U dm Udzdm dm dz
aw &2

— |l =—-2 2U Ly, Lyy
[(dz Uin+2U U )dmdn
@
dzdm dm

(me + Lnn)

au

dm
dLpy, d

+ U/-L(Lm’m - Lnn) - U— + UanL3 - UanL3 ¢

dn dn

z d2d~}3 d¢3 dU d2¢3
253 o™ (2 450, ) 22
nA{Uw + o Kd +3U —

243 243
+2 Lnnd¢ —3U ﬁJernJanm ¢
dmdn

(6.13)

dz dn dm

{(Zonn + L) (Uu - ﬁ) - <ﬁ>2 + (Lnn)® + Lm}dd’j

dm dm

au ~
L wm, <_ i an) w}
dm
The third pair of formulas requires 5 expanded in directional derivatives. This is easily obtained by
differentiation of ¢ with respect to time using d/dz and d/dn.
g dé _do

6= & V=g U

(6.14)

The second term is available as the coefficient of ny in the expansion (7.8). The first term needs to be taken
from equation (4.14) of [7],

Po oy a6

RN B
dz dzddg dn dq‘g - d(g (6.15)
U(Uu+dm+ + >dm <dz+U )dn
The expression wanted is
dé B¢ _dU &2 B U 2§, B
9w _C9 o7 ) P s
dz  dz3 dz dzdn Ud22 dn v dz dn? 2 " dz dn?
d du ¢
22U dU ;L ¢ (6.16)
- 7.9 _Lnn 5 Lnn TR ’
<d22 T U dz ) ( U )dzdn
B3é v &?¢ ., 43¢
= -2 -
Ud22 dn + dz dn? U dz dn?
U dU dLyy \ dé dU 24
_Lnn - Lnn *
<d22+dz U dz)dn ( = Y >dzdn
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The two versions (5.7) and (6.14) of ¢ are now comparable in ‘Ricci’ with the derivatives of vectors all
expanded in co-ordinates. The formulas produced (using (3.5) both to expand and to compress) are:

D3¢ D3 D3 d D26~ D28
[w}i[—m O s 2 ey Py <2+3—U> 0" ure, 20

Dn3 dz Dn? dz? Dn dz ) dz Dn P4z Dn
D2¢ﬁ D2 ¢o/
Dn?

Dn? Dm Dn

dU D2p”
U= 4+ULp, | —= —3U%L"
i (dz i ) ) p dm

dU

U\ DU, (dU 2y, — Whnn | D&
dU
+ 3{EL% + UPQun Q3 = UPQ5n Qs + U2L35Q5n" — UPL**Qn,
. D¢b
a e Y @ —_—
+ULY —UL*\ L3+ ULy, L ,8} Dn
: DL DL
13 UL 4 U +U? —U?N® —UL¥L%
dz Dn
dU  dU UL dg?
(Y, nn I3 e AN Gl
<dz PR )( o w)}d"}
(6.17)
and
B a3 ¢? a3 ¢? av\ d?¢?
3 — | 173 2 — - Lnn 2 .
[ﬁb} [ U an3 +3U dz dn2 3Ud22dn U ( +3dz>dzdn
AU 24P dU d?¢3
— Lpp | —5 == Lomn + Lnm
+3U(dz +ULy, ) oz T3U (dm+U“+ n S )dmdn
dUN' U, du s i dULpy | dg®
N DL3 DL? du :
Lsa . ¢ 2 o 2Na -9 2 (2= an Q’B — I/3 L,Ba
AU dU UL Do¢”
@ YL, nn L3oz Qﬁ .
(dz dz Ut T3 )( v “nﬁ)}Dn}
(6.18)

These simplify using (2.22) and (2.23) respectively, (4.3), (4.7), (4.17) and (4.18) to

P :a T a el
[(ﬂ = [—U‘°’¢“+3U2Dw —3UD2¢ -U <2+3ﬂ) [L D%¢ } + 6U {Laﬁ Do ]

dz dz? dz " dz Dn dz Dn
dU D2gp> D?¢° dU D2gp>
R Lnn - o | 2 La 2 5 Lmn an
—|—3U[(dz +U ) Dn2] 3U [ 5D”2]+3U [(dm+ on T ) DmDn}
dU\* DU dU : dU Ly, | Do
5 - T 5 -5 Lmn an - Lnn 2 - Lnn - nn
+ {U<dm> 77 +U(dm Uu)( n + Lnm) — U(Lpn)” — ULy, P }Dn

dU o ‘ « 30« @ «
" HEL 8+ UPQnnQf — UPQ507Qns + UL Q50 — UL,

+ULY —UL*,L" 3+ ULy, L" D¢?
B B nnt B8 Dn
DL3® dU dU UL d¢?
2 2 (= 2 Lnn ~ Hnn L3a (o) B Y
+3HU Dn (dz dzU T+ 3 )( +U am )}dn}

(6.19)
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and

dz d " dzdn

+3U [(Z—U + UL,m> ] + 30U [(— + Lyn + an) ¢? }

- d2 2 ; dU Ly, | do®
U

dm
+3H<@—@ULM >(L3 +UOPng) — 203 <Z—U+an> ngg}l;f ]
n

[&53} = U3¢3+3U2d—w3 —3Ud21/’3 U <2+3ﬂ> { d2¢’3]

dz dz
(6.20)

7 Oblique Trajectories

The usefulness of compatibility conditions with oblique trajectories, which can be chosen to be bicharacter-
istics of the partial differential equation being studied, has been well established. Nor is it difficult to find
them. The operator d/dr was defined in section two in terms of d/dz and d/dm. To produce compatibility
conditions using d/dr it is necessary only to replace d/dz and its iterates in the results of the previous section
by their equivalents in terms of d/dr and d/dm,

dz _ dr "Dm’

(7.1)

and correspondingly for ¢2. When this formula is iterated, as it must be, commutation relations like those
of section four of [7] are needed. Because of the vectorial commutation relation (3.22) derived above with
=, the commutativity conditions (4.1) of [7] hold here with the usual simplifying assumptions

D3¢a dD2¢a d’}/ D2¢a
= -5 me m )
Dmdr Dn  dr Dm Dn * <dm Un + ) Dm Dn
3.3 33 2.3 (7.2)
o . 4o (D g ig,,) 20
dmdrdn  drdmdn dm N mm ) dn
And so, analogously to (4.12) of [7], we obtain the appropriate substitutions:
D3¢oz D3¢oz D3¢a 9 D3¢oz d’y D2¢oz
N _ S :
d-2Dn _ dr2Dn_ ~'dr DmDn 7 Dm? Dn * <’YU77 7 dT) Dm Dn (73)
d3¢53 N d3¢53 L d3¢53 N ) d3¢3 N Un 1 B d’y d2¢3 '
d2dn ~ dr2dn ) drdmdn | dm2dn  \C7T 7T 0 ) dmdn

When these formulas are applied to expressions (6.1), (6.3), (6.10), (6.12), (6.17), and (6.18), they still
simplify as they did in section six, and the results are the six kinematic compatibility conditions of third
order for a surface vector field under the two simplifying assumptions set out in section one, the less and the
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more stringent, signaled by = and =:

. ~ D21Z)a dU D'JJO‘ quja
a - @ ) —
[ M {”W Uhme T (T” dm) Dm ' dr
dn Do
2 _——_——
+ [(KU +n°U P 277me) D } }mmnv
DQJJQ D21Z)a qua du =, N D2¢6
+{dTDm_’me2 _UDm —%1/) _[L éDmDn]

Dm Dn

D2¢> U
+ |:(me + Lnn - 277U) ¢ :| -n [(% +Lmn +an)

D A
+ [(UméneRa,\ae + ML(XA)—(b

e[ o D
+Um n- |:R )\geD—n:| mpn~
Dy Dye
+{ i Dy

" Dn?
3o di

D

d

= dU D2¢O‘
- @ 2 5 Lmn an
o T om U [(de“ n )

2 o 218 1)
B2 58]

)i

3
+ { dan ] (mmpmy — pmpgny — qnugmy + pngn. )

D } }(mﬁn'y + ngmy)

Dm Dn

Ta DQZG dU Ta
~ Uy mgmy — {U Dm + %w } (many + ngms)
Dlza Dlza z D2¢a D2¢6
— —Uy“ 2L p——s — L®
+{ o " om UV +[ " Dn? "Dn2 | [T
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Do~
Dn

|

(7.4)



and

- ~ d2i3 dwl} de
3 - 3 _
(973, = {”Uw Uamz * (m 2dm) dm ~ dr
dn d¢3
2 —_— — —_—
+ [(KU +n°U P 277me> in } }mmnv

d2153 d2d~}3 diz3 dU 3 d2¢3
+{d7’dm_’ydm2 _U% ¢ [( mm + Lnn —20U) }

dmdn
dU ¢3
—n [(—d + Lon + an) . ] }(mgn7 + ngmy)

d723 ng 3 dU d2¢3
+{?_7dm Uy +2 d_+Lmn+an dm dn

2 3 Do
o122 2,2 b,

Do
+ {L?’a D ] (=nmgme + pmgny + nngms — pngn.)

z du3 z
~ nUw?)mﬁm’y - {Ul + _¢ }(mﬁn'y + ngmey)

dm

L A 2
+{ = Vam Uyp® +2 | Ly, Iz | (7T
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o dU = Dy D2 D dU Dy°
ol = 2U —p* 2 -2 2
[43] m*{ U TV B~ pm TV o " 2 am
dU dU 240 D2gP
- 5 — 2 -2 2 2 me Lnn 2 L*
(dz Tam U +20 U )DmDn}—i— U{ ﬁDmDn]
dU U dU
+ {U"<d + bmn ) dzdm ~ dm Lmm + Lan)

dLyy,
dn

+Up(Lmm — Lnn) = U

+ UQnnL?, — UanL3n}D 0 }

Dm dm

) 5
+ 2U%K (mgn® — m“ng)) %} }

DL%g
+ <2U 2d—ULag +2UQm, L —2UQSm L5

Dn
N U21Za N D21;a L D2¢a N 2D2g5a 2UD,[ZO¢ dU UL D2¢a
" a> ~ Tdrpm 7 Dm? dr dz ") Dn?
DzZa D2¢’8 D2¢a D2¢ﬁ D2¢ﬁ

2 2 |UL* Lon - L” L~
+2Uy Dm * {U " Dn? * dr Dn Fdr Dn + "DmDn

[ dry dU D2

_dT+’y 2y Unv—i—SU(dm—l— N > DmDn}

[ dU AU\ 2 Do

Lmn an U - - 5 L Lnn
+ [{ (Lo + )(u dm) (dm> + (Lun)* + Lon } =5 — ]
DL%z .

+ <2U Dn Lag + Lavag — 2LagLnn

+3UQn, L3 —3UQ%nY L3 D—M
B v %) Dn

N dau = 2D1/Ja
~ mA{ mw U Dm }
gy DO Die
+ n,\{ 2o dT + 20U~y D
D?¢P aUu D% g~
2UL" -\ 5 Lnn .o
+{U " Dn? <d2+3U ) DnQ]}
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and

1 dU =5 Ldg® 2 &g, dU dy?

3] - av 73 2 _ -2

{(b,A} B m/\{2Udmw U dm 2Ud7' dm + Uy dm? dm dr
dU dU ) d?¢?

du PU AU
" {{Un<dm+ * ) dzdm dm( + )

dLnn d 3
+UN(me—Lnn)—UW +UanL3m_UanL3n i:|}

~ ) dn
+ m{UQzZ?’ + d;f - 2UC;—1§3 + 2U7Z—ﬁ - Ki—g + 3ULnn> %]
B, 2]
+ [{(Zmn + Lom) <UM - %) - (%)2 + (Lnn)? + L'nn}‘%o’l

o, (21 1,) )

z :3
~ mA{QUZ—ngB T UQ%}

dm
> di5? dy? dU 23
273 orr4Y¥° dy°
—I—n,\{U VP 20—+ 20Uy 2 UL | 5|

34



and

{z,'ﬁa} - _U?’ia + 3U2Dd1§a - 3UD;1£Q ~-U (2 + 3CCZZ—U) [Lm% - 'yLnn%] 16U [Lagéj_Qgi]
+6U~y v an 3U%y Dw - 3Uxy 2D21/;a +3U <d_ + YLmm — Uvn) %ﬁj —6Uy [LQ’GDJ?;(?;}
(e @%—wz{w;sf]w«%wmwDézm
(o () - 55 0 (45 - 00) Gt o) - 010 - - 2 B
H—L“ + U — UPQSnQns + UL 5050 — UPL**Qn,
+ UL —UL*, L7 + ULnnLaﬁ}%‘ﬁﬂ
3 Hw? le:;a (‘jg %ULM + Ué’”’) (L3 + Uﬂgnﬁ)}%j]
_usge + 307 dlza 3U° %ﬁl
130 [(fl_U " UL,m) LA }
(7.8)
and
[4°] = _USgR 4 30 dj 30 i—i - ?,Ud?3 +6U dde; — 3042 Cf;fj
(8 b ) 0 (2 ) [,
+3U K‘;—U + UL,m) ‘gdﬂ + 307 [(Z—U + Lynn + an> %}
dU d2U dU ) : dU Ly | do® (7.9)
- HU (%) — Tz +U <% - Uu> (L + Lm) = U(Lnn)? = UlLnn = —— }%}
+3 H (‘jg %ULM + Ué’”’) (L3 +UDBng) — 202 (% + an) ngﬁ} %dﬂ
~ —U31Z3 - 3U262l—1§3 — 302 Ccll—wg +3U KZZZ—U - UL,m) Ciiﬂ .

When L = 0, these six formulas reduce to those of [1].
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