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SUMMARY4

5

The focus of this paper is to illustrate important philosophies on inversion and the6

similarly and differences between Bayesian and minimum relative entropy (MRE)7

methods. The development of each approach is illustrated through the general-8

discrete linear inverse. MRE differs from both Bayes and classical statistical meth-9

ods in that knowledge of moments are used as “data” rather than sample values.10

MRE, like Bayes, presumes knowledge of a prior probability distribution (pdf) and11

produces the posterior pdf itself. MRE attempts to produce this pdf based on the12

information provided by new moments. It will use moments of the prior distribution13

only if new data on these moments is not available. It is important to note that MRE14

makes a strong statement that the imposed constraints are are exact and complete.15

In this way, MRE is maximally uncommitted with respect to unknown information.16

In general, since input data are known only to within a certain accuracy, it is im-17

portant that any inversion method should allow for errors in the measured data.18

The MRE approach can accommodate such uncertainty and in new work described19

here, previous results are modified to include a Gaussian prior. A variety of MRE20

solutions are reproduced under a number of assumed moments and these include21

second-order central moments. Various solutions of Jacobs and van der Geest (1991)22

were repeated and clarified. Menke’s weighted minimum length solution was shown23
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to have a basis in information theory, and the classic least squares estimate is shown24

as a solution to MRE under the conditions of more data than unknowns and where25

we utilize the observed data and their associated noise. An example inverse problem26

involving a gravity survey over a layered and faulted zone is shown. In all cases the27

inverse results match quite closely the actual density profile, at least in the upper28

portions of the profile. The similar results to Bayes presented in are a reflection of29

the fact that the MRE posterior pdf, and its mean are constrained not by d = Gm30

but by its first moment E(d = Gm), a weakened form of the constraints. If there31

is no error in the data then one should expect a complete agreement between Bayes32

and MRE and this is what is shown. Similar results are shown when second moment33

data is available (for example posterior covariance equal to zero). But dissimilar34

results are noted when we attempt to derive a Bayesian like result from MRE. In35

the various examples given in this paper, the problems look similar but are, in the36

final analysis, not equal. The methods of attack are different and so are the results37

even though we have used the linear inverse problem as a common template.38

1 INTRODUCTION39

Arguably, since the advent of Taratola’s work (eg. Tarantola, 1987) it has become common to40

consider both measured data and unknown model parameters as uncertain. In a probabilis-41

tic inverse approach, the ultimate goal is the posterior probability density function ( pdf),42

updated from some previous level of knowledge. Generally, although not exclusively, we are43

concerned with the expected values (or some other mode) of the posterior pdf, together with44

appropriate confidence limits. A detailed discussion of information-based methods is given in45

Ulrych and Sacchi (2006), specifically Bayesian inference, maximum entropy, and minimum46

relative entropy (MRE).47

Entropy maximization (MaxEnt) is a general approach of inferring a probability distribu-48

tion from constraints which do not uniquely characterize that distribution. Applications of this49

method have met with considerable success in a variety of fields (eg. Kapur 1989; Buck and50

Macauly, 1991). An often studied use for an entropy measure is as a penalty term or ”norm”.51
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In this way the entropy of a model can be maximized subject to non-linear constraints imposed52

the observed data.53

The related, but more general entropic principle is that of minimum relative entropy54

(MRE). An axiomatic foundation for MRE has been given by Shore and Johnson (1980)55

and Johnson and Shore (1983). The MRE principle is perhaps less well known than MaxEnt56

and was first introduced by Kullback (1959) as a method of statistical inference. The MRE57

approach to inversion was originally developed by Shore (1981) as an extension of Burg’s58

(1975) method of maximum entropy spectral analysis (see also Ulrych and Bishop, 1975).59

In the hydrological and geophysical literature our first publications on MRE attracted a60

certain amount of attention (Woodbury and Ulrych, 1993; 1996; Woodbury et al., 1998a).61

Our (1998) work was followed up with studies of small ‘toy’ problems, die experiments and62

an exhaustive comparison of MRE with Maximum Entropy, Bayesian and SVD solutions63

(Woodbury and Ulrych, 1998b). Finally, thesis and other papers (Neupauer, 1999; Neupauer et64

al., 2000; Ulrych and Woodbury, 2003) were produced in which detailed comparisons between65

Tikhonov regularization (Provencher, 1982ab; TR) and MRE were made.66

Ulrych et al. (2000) used entropic principles for a classical problem; that is finding moments67

and distributions from sample data. They showed that probability density functions that are68

estimated from L-moments are superior estimates to those obtained using sample central69

moments (C-moments) and the principle of maximum entropy. Woodbury (2004) detailed a70

general purpose computer program that produces a univariate pdf from a series of constraints71

and a prior probability. Some guidelines for the selection of the prior were presented.72

From a Bayesian perspective, Ulrych et al. (2001) summarized some of the concepts central73

to that approach to inverse problems. Of course, there are many examples in the geophysical74

literature on Bayes, many of which are referred to in Ulrcyh and Sacchi (2006) and Scales et.75

al. (2001). Some of the most often referred to works include Duijndam (1988) and Bretthorst76

(1988). These references are by no means exhaustive and only serve the purpose of recognizing77

the importance of Bayes theorem in problems of inference.78

Empirical Bayesian techniques have also undergone development and application in Geo-79

physics (e.g. Woodbury, 2007). There has always been controversy surrounding the use of,80

perhaps, arbitrary priors in Bayes Theorem. For example, the form of the pdf may be known81

or highly suspected but the actual statistical parameters embedded into the prior pdf, such82

as the mean, the variance and so on may not be well known and difficult to estimate. Noise83

levels in the data may also be unknown. The idea behind the empirical Bayes approach is84

that the prior is based on information contained in the input data (Ulrych et al.,2001).85
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What is perhaps less obvious from the published literature is how these methods are86

distinct from classical methods of statistical inference, such as maximum likelihood or least87

squares. How do Bayesian methods compare to entropic techniques, and under what circum-88

stances should one use entropic rather than Bayesian methods? This current effort is organized89

as follows. Minimum relative entropy (MRE), and Bayesian solutions for inverse problems are90

detailed and related. The focus of the paper is to illustrate important philosophies on in-91

version and the similarly and differences between the various solution methods. While there92

exists a considerable body of published works comparing maximum entropy and Bayes, there93

are few such works related to Bayes and MRE. Much of the existing work can be attributed94

to Kapur and coauthors, but some of the derivations were left incomplete. This paper will95

attempt to fill in those gaps, step by step in comparing inverse solutions on the general linear96

underdetermined model.97

2 BAYESIAN APPROACH TO INVERSION98

In this section we will review the classic Bayesian solution to the linear inverse problem. Much99

of this material will likely be well known to the reader but it is appropriate here to repeat this100

for the sake of completeness and understanding of the notation used. Here, we rely on linear101

transformations and Gaussian assumptions for probabilities. This step makes the following102

expectations and analysis tractable.103

In the discrete linear-inverse case, one needs to start with a forward modeling problem104

and this can be written as105

d = Gm (1)106

where d is a (n × 1) vector of theoretically predicted data and G (m × n) is a linear trans-107

formation (kernel matrix) from model to data space. In the case of observations though, the108

true “data” are corrupted by noise, for example109

d∗ = Gm + e (2)110

where e is an (n×1) vector of unknown error terms and m (m×1) vector of model parameters,111

“the model”. In the case where there are more data than unknowns we can, of course, use the112

classic least-squares approach, but this subject will not be covered in the present work. Here we113

focus on more interesting cases where more unknowns are sought than data values observed.114

Consequently, this ill-posed deterministic problem is recast in terms of a problem in statistical115

inference; one in which can be attacked from the viewpoint of updating probabilities.116
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Bayesian inference supposes that an observer can define a personal prior probability-117

density function (pdf) about some random variable m. This pdf, p(m), can be defined on the118

basis of personal experience or judgment and Bayes’ rule quantifies how this personal pdf can119

be changed on the basis of measurements. Consider a vector of observed random variables,120

d∗. If the conditional pdf of d∗ given the “true” value of m is given by Φ(d∗ | m) then121

Bayes’ rule states that122

Φ(m | d∗) =
Φ(d∗ | m)p(m)

∫

K Φ(d∗ | m)p(m)dm
(3)123

Φ(m | d∗) is the conditional pdf of m, given d∗, and Φ(d∗ | m) represents the conditional124

pdf from forward modeling. If a likelihood function can be defined ( i.e., the forward model125

exists), and there is a compatibility between observed results and a prior understanding of126

model parameters, (i.e., Φ(d∗ | m) > 0 for some m where p(m) > 0 ) then Bayes’ rule implies127

that the resulting posterior pdf exists and is unique (Tarantola, 1987, p53).128

For Bayes we must define a likelihood function which is a conditional pdf of the data, given129

the “true” model m. In other words we need a pdf for (d∗−d = e). If the physics is correct then130

the pdf for e only reflects measurement error. Classically, it is assumed that e = N (0, Cd); i.e.131

normally distributed with mean zero and covariance Cd = E[(d− d∗)(d − d∗)T ]. Therefore,132

we can write the Bayes likelihood as (see Tarantola, 1987, p68):133

Φ(d∗ | m) = ((2π)nd|Cd|)
− 1

2 exp

[

−
1

2
(d∗ − Gm)TC−1

d (d∗ −Gm)

]

(4)134

where n is the length of vector d∗. If the prior distribution of the model is also assumed to135

be Gaussian then the prior pdf for m is given the form:136

p(m) = ((2π)nm|Cp|)
− 1

2 exp

[

−
1

2
(m− s))TC−1

p (m− s))

]

(5)137

Here, s is the mean value and Cp is the covariance matrix which of course describes the138

variance and correlation of the parameters. Using (3, 4, and 5) the resulting posterior pdf139

from a Bayes analysis of the linear inverse problem with Gaussian priors and likelihood is:140

Φ(m | d∗) = C1 exp[−
1

2
(d∗ −Gm)TC−1

d (d∗ −Gm)

−
1

2
(m − s)TC−1

p (m− s)] (6)

Note that the mode of a Gaussian distribution is equal to its mean. So to find the mean141

and covariance of this pdf, we simply have to find the maximum of an objective function142

defined as143

J(m) = −
1

2
(d∗ − Gm)TC−1

d (d∗ −Gm)
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−
1

2
(m− s)TC−1

p (m− s) (7)

Expanding out the above results in144

J(m) = −
1

2
[mT (C−1

p + GT C−1
d G)m− mT (C−1

p s +

GT C−1
d d∗) − (sTC−1

p + d∗TC−1
d G)m +

sT C−1
p s + d∗TC−1

d d∗] (8)

Letting145

(C−1
p + GTC−1

d G) = C−1
q = A (9)146

and147

(C−1
p s + GT C−1

d d∗) = b (10)148

Results in149

J(m) = −
1

2
[mTAm− mTb− bTm + sTC−1

p s +

d∗T C−1
d d∗] (11)

Now taking the derivative of J with respect to m, recognizing that A is symmetric and150

setting the result to zero determines < m >, the posterior mean value;151

A < m >= b (12)152

< m >= A−1b (13)153

Expanding,154

< m >= (C−1
p + GT C−1

d G)−1(C−1
p s + GTC−1

d d∗) (14)155

Cq = (C−1
p + GT C−1

d G)−1 (15)156

which also can be written as:157

< m >= s + CpG
T (GCpG

T + Cd)
−1(d∗ − Gs) (16)158

Cq = Cp −CpG
T (GCpG

T + Cd)
−1GCp (17)159

Here, < m > and Cq are expected value and covariance of the posterior pdf,160

Φ(m | d∗) = ((2π)nm|Cq|)
− 1

2

exp

[

−
1

2
(m− < m >)TC−1

q (m− < m >)

]

(18)
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These results are well known (see Tarantola, 1987). Note in this case d∗ 6= G < m >. In161

other words, the average value of the predicted data d̄ from the average value of the model162

< m > is not equal to the observed data d∗. We note that the expected value of the model163

(16) could also be written as164

< m >= s + G−1
∗ (d∗ − Gs) (19)165

where G−1
∗ = CpG

T (GCpG
T + Cd)

−1, a generalized inverse matrix of G.166

3 MINIMUM RELATIVE ENTROPY THEORY167

Minimum relative entropy (MRE) is an information-theoretic method of problem solving. Its168

roots lie in probability theory and in an abstract way deals with information measures in169

probability spaces (Kapur and Kessavan, 1992). MRE was classically dervived by Shore and170

Johnson (1980) and follows directly from four basic axioms of consistent inference which are:171

uniqueness, invariance, system independence and subset independence. Stated in other words,172

if a problem can be solved in difference ways, each path has to lead to the same answer.173

Consider a system having a set of possible states. Let x be a state and q†(x) its un-174

known multivariate probability density function (pdf). Note that xT = (x1, x2, x3, . . . , xK)175

and the integrals noted below are multiple integrals over each of the xi. The pdf must satisfy176

a normalizing constraint177

∫

q†(x)dx = 1 (20)178

Now, let us suppose that there is prior information on q†(x) in the form of a pdf, p(x), and179

new information exists, say expectations of the form of j = 1, M expected value constraints180

∫

q†(x)fj(x)dx = f̄j (21)181

or bounds on these values. It is important to note here that MRE makes a strong statement182

that the constraints are exact and complete. That is, the M values are the only only ones183

operating and these are known exactly. The task at hand then is to choose a distribution q(x)184

out of the infinite possibilities that is in some way the best estimate of q†, consistent with this185

new information. The solution is to minimize H(q, p), the entropy of q(x) relative to p(x),186

where187

H(q, p) =

∫

q(x) ln

[

q(x)

p(x)

]

dx (22)188

subject to the constraints of the form of equations (20) and (21). The posterior estimate q(x)189

has the form ( Shore and Johnson, 1980; Woodbury and Ulrych, 1993)190
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q(x) = p(x) exp



−1 − µ −
M
∑

j=1

λjfj(x)



 (23)191

where µ and the λj are Lagrange multipliers determined from equations (20) and (21). If the192

final goal is the posterior pdf, (23) is the form of the solution and one has to determine the193

Lagrange multipliers (Johnson, 1983). For an inverse problem, we are likely concerned with194

the expected values of the posterior pdf, q(x) together with the appropriate confidence limits.195

Now for the geophysical inverse problem, we have to minimize196

H =

∫

q(m) ln
q(m)

p(m)
dm (24)197

subject to any number of moments but for the sake of argument here, the first two central198

moments:199

∫

q(m)mdm =< m > (25)200

∫

q(m)[(< m > −m)(< m > −m)T ]dm = Cq (26)201

along with the normalizing constraint202

∫

q(m)dm = 1 (27)203

The MRE solution to this problem is (Kapur, 1989)204

q(m) = ((2π)nm|Cq|)
− 1

2

exp

[

−
1

2
(m− < m >)T C−1

q (m− < m >)

]

(28)

The reader will notice that in order for us to obtain this solution we would have to first205

specify moments of the posterior pdf, namely Cq and < m > which we do not normally have.206

Instead, given the theoretical relationship d = Gm, we can rearrange the above constraints207

into a form that is more convenient for the data we actually observe and then solve the MRE208

minimization. Rearranging (25) yields209

∫

q(m)(d̄− Gm)dm = 0 (29)210

where G < m >= d̄ and211

∫

q(m)[(d̄−Gm)(d̄−Gm)T ]dm = R = GCqG
T (30)212

In the above, R is the covariance of d, E[(d− d̄)(d − d̄)T ]. If p(m) is multivariate and213

Gaussian;214

p(m) = ((2π)m|Cp|)
− 1

2
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exp

[

−
1

2
(m− s))TC−1

p (m− s))

]

(31)

then q(m) is (Kapur et al., 1994):215

q(m) = C2 × exp

[

−
1

2
((m− s)TC−1

p (m− s))

]

× exp
[

−λ0 − λT (d̄−Gm) − (d̄− Gm)TD−1(d̄−Gm)
]

(32)

where C2 is a normalizing constant, and λ0, λ and the matrix D−1 are Lagrange multipliers216

that have to be determined from the constraints (27, 29, 30). In the subsequent sections it217

will be shown how the multipliers can determined for specific cases.218

3.1 Updating prior with only first moment information219

For the MRE solution, we want to minimize220

∫

q(m) ln
q(m)

p(m)
dm (33)221

subject to:222

∫

q(m)dm = 1 (34)223

along with224

∫

q(m)(d̄− Gm)dm = 0 (35)225

That is, we want to update the prior, based only on a new mean value constraint. As before we226

assume a Gaussian prior, and replacing the expected value of the data d̄ for the observations227

d∗ that we actually obtain yields228

q(m) = C3 × exp

[

−
1

2
((m− s)TC−1

p (m− s))

]

× exp
[

−λ0 − λT (d∗ −Gm)
]

(36)

Defining A = C−1
p and b = C−1

p s yields the objective function229

J(m) = −
1

2
[mTAm− mTb− bTm + sTC−1

p s +

−2λT (Gm − d∗)] (37)

Taking the derivative of J with respect to m and setting the result to zero yields230

A < m >= b− GTλ (38)231
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The next step is to find the λ values. We know from the second MRE constraint232

∫

q(m)(d∗ − Gm)dm = 0 (39)233

or d∗ = G < m >. Substituting the above expression for the mean value of the model results234

in235

GA−1(b + GTλ ) = d∗ (40)236

and solving for the λ’s237

λ = (GA−1GT )−1[d∗ − GA−1b] (41)238

Finally substituting this value back into our expression for the mean value239

< m >= A−1
[

b + GTλ
]

(42)240

< m >= A−1(b + GT (GA−1GT )−1[d∗ − GA−1b]) (43)241

< m >= A−1b + A−1GT (GA−1GT )−1[d∗ − GA−1b] (44)242

or, with the definitions of A = C−1
p and b = C−1

p s243

< m >= s + CpG
T (GCpG

T )−1[d∗ −Gs] (45)244

and it is noted that the posterior covariance is not updated;245

Cq = Cp (46)246

This is identical to the results of Jacobs and van der Geest (1991). Note that CpG
T (GCpG

T )−1
247

could be again be referred to as G−1
∗ , a generalized inverse of G. Equation (45) is of the same248

form as a weighted minimum length solution (see Menke, 1989, p. 54). Therefore, the WML249

solution has a basis in information theory.250

3.2 Updating prior with first and second moment information251

For the MRE solution, we have to minimize (33) subject to (34) along with the mean value252

constraint (35) and253

∫

q(m)[(d̄−Gm)(d̄−Gm)T ]dm = R (47)254

q(m) is of the form (32) and again, the Lagrange multipliers determined from the con-255

straints. We can then proceed in the same way as before;256

Letting257

(C−1
p + GTD−1G) = C−1

q = A (48)258

and259
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(C−1
p s + GT D−1d̄) = b (49)260

We now have261

J(m) = −
1

2
[mTAm− mTb− bTm + sTC−1

p s +

d̄T D−1d̄− 2λT (Gm − d̄)] (50)

Now taking the derivative of J, and setting the result to zero determines < m >, as262

A < m > −b− λT G = 0 (51)263

A < m >= b + λT G (52)264

< m >= A−1
[

b + λT G
]

(53)265

Expanding these terms out yields266

< m >= (C−1
p + GT D−1G)−1(C−1

p s + GTD−1d̄−GT λ ) (54)267

Cq = (C−1
p + GT D−1G)−1 (55)268

Rearranging,269

< m >= Cq(C
−1
p s + GTD−1d̄−GT λ ) (56)270

The covariance can be written as271

Cq = Cp −CpG
T [GCpG

T + D]−1GCp (57)272

Let us first examine a limiting case. Suppose we impose a second moment constraint273

condition that Cq = 0. This means that R = 0, and then D must also equal zero in the above274

and275

Cq = Cp −CpG
T (GCpG

T )−1GCp → 0 (58)276

Using the results from (44), we also arrive with277

< m >= s + CpG
T (GCpG

T )−1[d∗ −Gs] (59)278

which is identical to the results of Jacob and van Der Geest (1991) for R = 0, assuming279

d̄ = d∗. In (58) CpG
T (GCpG

T )−1 = G−1
∗ . The important lesson to be learned at this stage280

is that the second moment information in the posterior is not updated unless specifically281

required.282

3.2.1 General Case: Determining Mean and Covariance283

Noting the second MRE moment constraint is284
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E[(m− < m >)(m− < m >)T ] = Cq (60)285

∫

q(m)(Gm− d̄)(Gm − d̄)Tdm = GCqG
T = R (61)286

The next step is to find the λ values. We know from the first MRE constraint.287

∫

q(m)(d̄− Gm)dm = 0 (62)288

or d̄ = G < m >. Substituting the above expression for the mean value of the model (58)289

results in290

< m >= Cq(C
−1
p s + GTD−1 − d̄T λ ) (63)291

< m >= (CqC
−1
p s + CqG

T D−1 − d̄qG
T λ ) (64)292

Now we know from the mean value constraint that G < m >= d̄ and multiplying the293

mean model by G yields294

G < m >= d̄ = GCqC
−1
p s + GCqG

T D−1d̄− GCqG
Tλ (65)295

Solving for λ and substituting back into the expression for the mean value results in296

< m > = CqC
−1
p s + CqG

T D−1 + CqG
T R−1d̄

−CqG
T [GCqG

T ]−1GCqC
−1
p s

−CqG
TD−1d̄) (66)

This equation may simplify to297

< m >= CqC
−1
p s + CqG

TR−1d̄−CqC
−1
p s (67)298

and finally to299

< m >= CqG
T R−1d̄ (68)300

One can see here that knowledge of Cq is required to obtain a solution and for many301

problems this would not be known. If we choose to approximate it as R = Cd = GCqG
T and302

d̄ = d∗ then303

< m >= (GTC−1
d G)−1GT C−1

d d∗ (69)304

The reader should note that the above result is only valid in a ”weak” sense, that is the305

matrix Cq = (GT C−1
d G)−1 in the above case (69) is likely singular for the underdetermined306

case and in this situation one would have to rely on the generalized inverse. We also note that307

replacing R for Cd involves an approximation that Bayes does not have. Equation (69) can308

be recognized as the classic least squares solution if there is more data than unknowns. Note309



12 Allan D. Woodbury

also the prior covariance is ignored. This should perhaps come as no surprise to us that MRE310

ignores moments of the prior information if not strictly required.311

We can write the equation for the mean as312

< m >= G−1
∗ d∗ (70)313

where G−1
∗ = CqG

TC−1
d .314

3.2.2 Constraining Covariance Only315

If we choose to enforce the second moment constraint (63) and not the mean constraint (35),316

then we do not require that the data are fitted exactly. By examining equations (58, 59) the317

constraints on λ are not required. This reduces (58) and (59) to318

< m >= Cq(C
−1
p s + GTD−1d̄) (71)319

and the posterior covariance320

Cq = Cp −CpG
T [GCpG

T + D]−1GCp (72)321

MRE requires that we know Cq and then given this we would have to find that matrix D to322

satisfy the constraint. If it is assumed that the posterior covariance is of the same form as323

Bayes324

Cq = Cp −CpG
T (GCpG

T + C−1
d )−1GCp (73)325

Then clearly D = C−1
d in (73) and (74). Using the results from (58), we also arrive with326

< m >= s + CpG
T (GCpG

T + C−1
d

)−1[d∗ − Gs] (74)327

assuming d̄ = d∗.328

3.3 Updating prior with first moment information and uncertain constraints329

In general, since the input data are known only to within a certain accuracy, it is important330

that we do not satisfy the first momement constraint in a strong way, instead d∗ 6= G <331

m >= d̄. The inversion method should allow for errors in the measured data. The MRE332

approach can accommodate such uncertainty and this subject has been discussed by Johnson333

and Shore (1984), Ulrych et al. (1990) and Woodbury and Ulrych (1998b).334

The problem is posed in the following way. Minimize H(q, p), the entropy of q(m) relative335

to p(m), (34), subject to (35) and a more general form of equation (21);336

[(G < m > −d̄)T (G < m > −d̄)] ≤ ε2 (75)337
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or338

(

∫

q(m)Gmdm− d∗)T (

∫

q(m)Gmdm− d∗) ≤ ε2 (76)339

where ε is a known error term and replacing d̄ for d∗. Note that ε is required for the analysis to340

proceed. If this value is not known, Ulrych and Woodbury (2003) show that it can be estimated341

in a variety of ways, including estimated from the data themselves, a rigorous approach using342

the real cepstrum and the AIC criterion. It can be shown (Johnson and Shore, 1984) that343

the MRE solution has the same form as equations (10) and (11) but with data constraints344

modified to345

G < m >= d∗ − ε
β

‖β‖
= d† (77)346

for the case where the data errors are identically distributed and independent. The vector347

β = (β1, β2, · · ·βn) is a vector of Lagrange multipliers. The important fact from the point348

of view of MRE is that the form of the solution with uncertain data is not changed; only a349

simple modification of the solution algorithm is required.350

Past efforts in MRE along these lines take the point of view of the prior either being351

uniform or with some character such as a truncated exponential (Woodbury and Ulrych,352

1996). In new work described here, previous results are modified to include a Gaussian prior.353

In this light we can use the following results. First define our posterior pdf in the form354

q(m) = p(m) exp
[

−α − βTGm
]

(78)355

where356

β = 2λG < m > (79)357

If p(m) is Gaussian as before then358

q(m) = C3 × exp

[

−
1

2
((m− s)TC−1

p (m− s))

]

(80)

× exp
[

−λ0 − βT(d† −Gm)
]

(81)

As shown earlier, the mean value for q(m) is359

< m >= s + CpG
T (GCpG

T )−1[d† −Gs] (82)360

and we note Cq = Cp. Note also these results could be expressed in a general way,361

< m >= s + G−1
∗ [d† − Gs] (83)362

β = (GCpG
T )−1[d† − Gs] (84)363

The mean value written in terms of β364
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< m >= Cp

[

C−1
p s + GT β

]

(85)365

The above equation for < m > includes a non-linear dependency on the Lagrange multi-366

pliers βj in the term for d† and an iterative sequence must used to establish the final result.367

Note that this result can be shown to be identical in form to that of the WML solution of368

(45).369

4 COMPARISONS OF BAYESIAN AND MRE APPROACHES370

In this section we will summarize the approaches detailed in this paper and offer a comparison371

between them (see Tables I and II). Seth and Kapur (1990), Kapur and Kessavan (1992),372

Kapur et al. (1994), Macauly and Buck (1989) and Jacobs and van der Geest (1991) enunciated373

some of these differences and the essence of their comparisons is repeated and expanded upon374

here. The essential difference between the two is given below:375

(i) Bayes: This approach is different than the classical methods of first obtaining a sample,376

and then using sampling distribution theory to obtain estimates of the parameters. Bayes377

assumes some prior probability (density) which the model follows. The method then pro-378

ceeds to use a sample of observations, say x1, x2, . . . to update the prior probability to a new379

(revised) posterior probability. This new probability, or probability density, incorporates the380

information of the sample. More data can be then taken and the updated pdf can be renewed381

again in a continuous way. These features of Bayes, the assumptions of prior probabilities and382

continuous updating in the light of new observations, are of key importance. The prior pdf383

can play an important role in the inversion and has been the center of many disputes that384

have come about as the result of the use Bayes theorem.385

(ii) MRE: This approach differs from both Bayes and classical statistical methods in that386

knowledge of moments are used as ”data” rather than sample values, x1, x2, . . .. MRE, like387

Bayes, presumes knowledge of a prior probability distribution and produces the posterior pdf388

itself. For example, suppose we have a univariate prior pdf that is Gaussian and we know the389

mean µ and variance σ2. Suppose we have new information in the form of a mean µ1. Then390

the posterior pdf is also Gaussian with mean changed to µ1 but with the variance unchanged.391

MRE attempts to produce a pdf based on the information provided by new moments. It will392

use moments of the prior distribution only if new data on these moments is not available (see393

Woodbury, 2004). It is important to note here that MRE makes a strong statement that the394

constraints are exact and complete. That is, the M values are the only only ones operating395
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and these are known exactly. In this way, MRE is maximally uncommitted with respect to396

unknown information.397

Some examples of Bayesian inference along with MRE solutions are given below (Tables I398

and II). These would appear to be at first glance identical problems and are used to illustrate399

important differences and similarities. For the case of a linear inverse problem and the Bayes400

solution, imagine that the observations are error free; that is Cd → 0 (Table I, row 4). Using401

the relationships402

< m >= s + CpG
T (GCpG

T + Cd)
−1(d∗ − Gs) (86)403

with Cd = 0 results in404

< m >= s + CpG
T (GCpG

T )−1(d∗ −Gs) (87)405

This mean value is identical to the MRE approach of updating based on the first moment406

only ( Table I, row 5). However, the Bayes posterior covariance with Cd = 0 is;407

Cq = Cp −CpG
T (GCpG

T )−1GCp = Cp − G−1
∗ GCp → 0 (88)408

which is identical to the MRE result ( Table I, row 3) but an additional constraint is409

required. Let us take the opposite case for the Bayes solution and imagine that the observations410

are totally inaccurate; that is Cd → ∞ or C−1
d

→ 0. Recall that for Bayes411

< m >= (C−1
p + GT C−1

d G)−1(C−1
p s + GTC−1

d d∗) (89)412

If C−1
d → 0 then m = s and the covariance Cq = Cp. (See Table I, row 6). In this limiting413

case if we assume that the data are totally imprecise then the Bayes posterior mean is equal414

to the prior mean and the prior covariance is equal to the posterior covariance. These results415

are not the same for the MRE approach in the mean (Table I, row 5) but identical in the416

covariance. Note though, that not specifying a covariance is not the same as stipulating that417

the covariance is infinite.418

Table I, row 7 shows how we can alter the MRE approach in such a way that it includes419

an estimate of the error in the observed data. In this way the results for the mean value are420

similar in form to pure Bayes (Table I, row 1), however no change in the covariance is possible421

with this approach.422

Figure 1 shows the result of an example inverse problem involving a gravity survey over423

a layered and faulted zone. The example is similar in many respects to that of Mosegaard424

and Tarantola (1995). The problem considered is a vertical fault extending from surface to425

a maximum depth of 100 km. The example has 26 layers with a thickness derived from an426

exponential function with a mean value of 4 km in thickness. The actual layer densities are427
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generated out of an uncorrelated normal distribution with mean value of 3,000 kg/m3 and428

a standard deviation of 500 kg/m3. A total 19 values of the first horizontal derivative of429

gravity are generated at evenly spaced points (2,000 m) across the fault using equation (1) of430

Mohan et al. (1986). These values are corrupted with Gaussian noise of 0.25 x 10−9 s−2. This431

information then, forms the kernal matrix and data set in a discrete form.432

Figure 1 shows in red the actual, or true density distribution with depth. The black line433

shows the Bayesian results with a prior Gaussian distribution of standard deviation of 500434

kg/m3 and correlation length of 5,000 m. The blue line shows the Bayesian results with the435

same prior as above and correlation length of 2,000 m. In green is the equivalent MRE solution436

with the same prior as the blue line case above. Here, the inverse matrix in (26) was found437

to be singular and an SVD was used to obtain the result. In all cases the inverse results438

match quite closely the actual density profile, at least in the upper portions of the profile.439

Overall, the general trend in the results is clear and reflects a typical smearing consistent with440

expected value determinations. In each case the predicted model generates data that very441

closely matches the observations.442

5 CONCLUSIONS443

Much of the existing work comparing maximum entropy, MRE and Bayes, can be attributed444

to Kapur and coauthors, but some of the derivations in various works were left incomplete.445

This paper attempts to fill in those gaps, step by step, in comparing inverse solutions. Specif-446

ically an undetermined-discrete linear inverse problem was chosen as a common template for447

comparisons. It is assumed here that the “noise” in a set of observables is Gaussian and the448

prior probability pdf is also assumed multivariate Gaussian.449

In the various examples given in this paper, the problems look similar but are, in the final450

analysis, not quite equal. The similar results presented in Figure 1 and Table I are a reflection451

of the fact that the MRE posterior pdf, and its mean is constrained not by d = Gm but by452

its first moment E(d = Gm] a weakened form of the constraints (Jacobs and van der Geest,453

1991) . If there is no error in the data then one should expect a complete agreement between454

Bayes and MRE and this is what is shown. Similar results are shown when second moment455

data is available (for example posterior covariance equal to zero). But dissimilar results are456

noted when we attempt to derive a Bayesian like result from MRE (see section 3.2.2). The457

MRE pdf is still multivariate Gaussian (see 32) but different than that of Bayes (18) because458

that distribution does not satisfy the same constraints. We can derive the Bayes solution from459

MRE principles in the undetermined case if we do not insist that the predicted data d̄ are460
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Figure 1. Comparison of linear inverse results over a layered fault.

equated to the observed data, and we only enforce a condition of known covariance Cq equal461

to what would be obtained from Bayes. If the unknown matrix of Lagrange multipliers is set462

equal to the observed noise error C−1
d then we duplicate the Bayes solution. It is important463

to note though that this argument is circular.464

In general though, since the input data are known only to within a certain accuracy, it465

is important that any inversion method allow for errors in the measured data. The MRE466

approach can accommodate such uncertainty and this subject has been discussed by Johnson467

and Shore (1984) and Ulrych et al. (1990). We show in this paper how a Gaussian prior can be468



18 Allan D. Woodbury

updated with new data such that d̄ does not equal (exactly) the observed data. The important469

fact from the point of view of MRE is that the form of the solution with uncertain data is not470

changed; only a modification of the standard solution technique is required.471

The classic results of the posterior solution under Gaussian priors and likelihood is re-472

peated for clarity and completeness. A variety of MRE solutions are reproduced under a473

number of assumed moments and these stop at second-order central moments. Various so-474

lutions of Jacobs and van der Geest (1991) were repeated and clarified. Menke’s weighted475

minimum length solution was shown to have a basis in information theory, and the classic476

least squares estimate is shown as a solution to MRE under the conditions of more data than477

unknowns and where we utilize the observed data and their associated noise.478

One of the first questions posed in this paper was under what circumstances should one use479

entropic rather than Bayesian methods? The answer to that question may not be settled here.480

Certainly maximum entropy and MRE have had a huge success in geophysics (see Shore, 1981;481

Ulrych and Bishop, 1975). The MRE approach in the author’s opinion is very flexible and may482

be much less demanding then the full Bayesian solution. MRE has shown to be ideal when483

constraining moments are known, for example: known second moments from autocorrelation484

(Shore, 1981), gross earth properties and density inversion (Woodbury and Ulrych, 1998b),485

and hydrologic applications (Kaplan et al., 2002; Singh, 2000). A very good case can be made486

for MRE in cases where little or no prior information is available (Kennedy et al., 2000)487

because MRE enforces conditions of independence. When some measure on the error on a488

set of observations is known the MRE approach can accommodate such uncertainty. Having489

said that, so can empirical Bayes, when say, the noise variance or other hyperparameters are490

unknown and have to be estimated from the data themselves.491

If the prior in inverse problems has an important role then one could ask what are the492

ramifications associated with a particular choice? Certainly it is somewhat unpleasant to493

have to introduce some prior information to a problem in the first place to obtain a solution.494

As Menke (1989) suggested, the importance of the prior information depends on the use495

one plans for the results of the inversion. If one simply wants an exploration target then496

perhaps that choice is not important. If one plans on using the results of the inversion,497

specifically the errors in the estimates, then the validity of the prior assumptions (and pdfs498

in a probabilistic inversion) are critically important. This may be the case when the inverse499

problems are conducted in the realm of the environmental sciences or in engineering risk500

assessment. In these cases MRE may indeed play a important role in inverse problems in501

which it is desired to be maximally uncommitted with respect to unknown information.502
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It is important to note that (Seth and Kapur, 1990)503

“For the same problem, different methods of estimation can lead, quite expectedly to different results.504

Since statistical inference is inductive, there can be no perfect solution and there can be even differences505

of opinion as to which one is best.”506
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