DATE: December 8, 2006	FINAL EXAMINATION
PAPER NO: <u>88</u>	PAGE 1 of 9
DEPARTMENT & COURSE NO: MATH 1300	TIME: <u>2 hours</u>
EXAMINATION: Vector Geom. & Lin. Alg.	EXAMINER: Various

Values

1. The augmented matrix of a system of linear equations has been reduced to the matrix

1	2	0	0	2]
0	0	1	0	-1
0	0	0	1	2
0	0	0	a(a-1)	a

[6] (a) Find all of the values of *a*, if any, for which the system is inconsistent.

(b) Find all of the values of *a*, if any, for which the system has infinitely many solutions. What is the number of parameters that must be introduced?

[3]

[6]

(c) Find all values of *a*, if any, for which the system has unique solution.

DATE: December 8, 2006	FINAL EXAMINATION
PAPER NO: <u>88</u>	PAGE 2 of 9
DEPARTMENT & COURSE NO: MATH 1300	TIME: <u>2 hours</u>
EXAMINATION: Vector Geom. & Lin. Alg.	EXAMINER: Various

Values

[10] 2. Use Cramer's Rule to solve for x_3 from the linear system

3. Let $A = \begin{bmatrix} 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & -1 & 3 & 0 \\ 2 & 1 & 5 & -3 \end{bmatrix}$.

[8]

(a) Evaluate the entries a and b in the incomplete adjoint of A:

$$\operatorname{adj}(A) = \begin{bmatrix} -8 & 6 & b & 2 \\ a & 0 & -10 & 0 \\ 5 & 0 & 0 & 0 \\ 8 & 4 & -2 & -2 \end{bmatrix}$$

[2]

(b) If you know that det(A) = 10, find A^{-1} by using Part (a).

DATE: December 8, 2006	FINAL EXAMINATION
PAPER NO: <u>88</u>	PAGE 3 of 9
DEPARTMENT & COURSE NO: MATH 1300	TIME: <u>2 hours</u>
EXAMINATION: Vector Geom. & Lin. Alg.	EXAMINER: Various

Values

4. Let A(1, 0, 1), B(1, 2, 3) and C(3, 2, 1) be points in \mathbb{R}^3 .

[6]

(a)

Find the area of the triangle with the vertices A, B and C.

[4]

(b) Find $\operatorname{proj}_{\overrightarrow{AB}}(\overrightarrow{AC})$.

DATE: December 8, 2006

FINAL EXAMINATION

PAPER NO: <u>88</u>

DEPARTMENT & COURSE NO: <u>MATH 1300</u>

EXAMINATION: Vector Geom. & Lin. Alg.

Values

PAGE 4 of 9

TIME: <u>2 hours</u>

EXAMINER: <u>Various</u>

			a	b	С		a – 2	b+4	<i>c</i> – 6
[10]	5.	Given that	d	е	f	= 5, find	2a + 3d	2b + 3e	2c + 3f
			1	-2	3		3	-6	9

DATE: December 8, 2006	FINAL EXAMINATION
PAPER NO: <u>88</u>	PAGE 5 of 9
DEPARTMENT & COURSE NO: MATH 1300	TIME: <u>2 hours</u>
EXAMINATION: <u>Vector Geom. & Lin. Alg.</u>	EXAMINER: <u>Various</u>

Values

- 6. Let Π be the plane 2x-3z+12=0, and let P(-1, 1, -1) and Q(1, 0, 1) be two points in \mathbb{R}^3 .
- [6]
- (a) Find parametric equations of the line ℓ that is perpendicular to the plane Π and that contains the point P.

[5] (b) Find the point of intersection of the line ℓ (from (a)) and the plane Π .

[4] (c) Find the distance between the point P and the plane Π .

DATE:	December 8, 2006	

FINAL EXAMINATION

PAGE 6 of 9

TIME: 2 hours

EXAMINER: Various

PAPER NO: <u>88</u>

DEPARTMENT & COURSE NO: MATH 1300

EXAMINATION: Vector Geom. & Lin. Alg.

Values

7. Let $\mathbf{u} = (1, 3, 0, -2)$ and $\mathbf{v} = (3, -1, 1, -6)$.

[5]

(a) Is the set of vectors $\{u,v\}$ linearly independent or not? Justify your answer.

[2] (b) Are **u** and **v** orthogonal or not? Justify your answer.

[4] (c) Find all values of k such that $k\mathbf{u}$ is a unit vector.

DATE: December 8, 2006

FINAL EXAMINATION

PAPER NO: <u>88</u>

DEPARTMENT & COURSE NO: MATH 1300

EXAMINATION: Vector Geom. & Lin. Alg.

TIME: <u>2 hours</u>

PAGE 7 of 9

EXAMINER: Various

Values

8. Let
$$A = \begin{bmatrix} 1 & 1 \\ 0 & -2 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & -1 \\ 0 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 0 & 0 \\ -1 & -1 \end{bmatrix}$

[5]

(a) Determine whether the set $\{A, B, C\}$ is linearly independent or not.

[5] (b) Does
$$D = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 belong to the span of $\{A, B, C\}$? Explain.

[2] (c) Does
$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 belong to the span of $\{A, B, C\}$? Explain.

[2] (d) Is the set $\{A,B,C\}$ a basis for M_{22} ? Explain.

DATE: December 8, 2006	FINAL EXAMINATION
PAPER NO: <u>88</u>	PAGE 8 of 9
DEPARTMENT & COURSE NO: MATH 1300	TIME: <u>2 hours</u>
EXAMINATION: Vector Geom. & Lin. Alg.	EXAMINER: <u>Various</u>

Values

9. In each question below determine if W is a subspace of the vector space V:

[3] (a) $V = \mathbb{R}^3$ and $W = \{(x, y, z) : x - 2y + z + 3 = 0\}.$

[6] (b)
$$V = \mathbb{R}^3$$
 and $W = \{(2t, -t, 0) : t \text{ in } \mathbb{R}\}.$

[6] (c)
$$V = \mathbb{P}_2$$
 and $W = \{p(x) = ax + 3ax^2 : a \text{ in } \mathbb{R}\}.$

DATE:	December 8	3, 2006

PAPER NO: <u>88</u>

DEPARTMENT & COURSE NO: MATH 1300

EXAMINATION: Vector Geom. & Lin. Alg.

Values

10. Let A be a 5x5 matrix

(a)

[4]

If A is invertible, find a basis and the dimension of the row space and of the null space of A.

[6]

(b) If A is such that its reduced row echelon form

	1	-1	0	3	0	
	0	0	1	2	0	
<i>R</i> =	0	0	0	0	1	
	0	0	0	0	0	
	0	0	0	0	0	

Find a basis for the row space and a basis for the null space of A. What is the dimension of the column space of A?

FINAL EXAMINATION

PAGE 9 of 9

TIME: <u>2 hours</u>

EXAMINER: Various