THE UNIVERSITY OF MANITOBA

DATE: December 8, 2006
PAPER NO: 88
DEPARTMENT \& COURSE NO: MATH 1300
EXAMINATION: Vector Geom. \& Lin. Alg.

FINAL EXAMINATION
PAGE 1 of 9

TIME: 2 hours

EXAMINER: Various

Values

1. The augmented matrix of a system of linear equations has been reduced to the matrix

$$
\left[\begin{array}{cccc|r}
1 & 2 & 0 & 0 & 2 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & a(a-1) & a
\end{array}\right]
$$

[6]
(a) Find all of the values of a, if any, for which the system is inconsistent.
(b) Find all of the values of a, if any, for which the system has infinitely many solutions. What is the number of parameters that must be introduced?

THE UNIVERSITY OF MANITOBA

DATE: December 8, 2006
PAPER NO: 88

DEPARTMENT \& COURSE NO: MATH 1300
EXAMINATION: Vector Geom. \& Lin. Alg.

FINAL EXAMINATION

PAGE 2 of 9

TIME: 2 hours

EXAMINER: Various

Values

[10] 2. Use Cramer's Rule to solve for x_{3} from the linear system

$$
\begin{aligned}
-x_{1}+3 x_{2}-3 x_{3} & =0 \\
2 x_{1}+3 x_{2} & =0 \\
2 x_{1}-x_{2}+x_{3} & =5 \\
3 x_{1}-x_{2}-4 x_{3}+2 x_{4} & =7
\end{aligned}
$$

3. Let $A=\left[\begin{array}{rrrr}0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & -1 & 3 & 0 \\ 2 & 1 & 5 & -3\end{array}\right]$.
(a) Evaluate the entries a and b in the incomplete adjoint of A :

$$
\operatorname{adj}(A)=\left[\begin{array}{rrrr}
-8 & 6 & b & 2 \\
a & 0 & -10 & 0 \\
5 & 0 & 0 & 0 \\
8 & 4 & -2 & -2
\end{array}\right]
$$

(b) If you know that $\operatorname{det}(A)=10$, find A^{-1} by using Part (a).

THE UNIVERSITY OF MANITOBA

DATE: December 8, 2006
PAPER NO: 88
DEPARTMENT \& COURSE NO: MATH 1300

EXAMINATION: Vector Geom. \& Lin. Alg.

FINAL EXAMINATION

PAGE 3 of 9

TIME: 2 hours

EXAMINER: Various

Values
4. Let $A(1,0,1), B(1,2,3)$ and $C(3,2,1)$ be points in \mathbb{R}^{3}.
(a) Find the area of the triangle with the vertices A, B and C.
(b) \quad Find $\operatorname{proj}_{\overrightarrow{A B}}(\overrightarrow{A C})$.

THE UNIVERSITY OF MANITOBA

DATE: December 8, 2006
PAPER NO: 88

DEPARTMENT \& COURSE NO: MATH 1300
EXAMINATION: Vector Geom. \& Lin. Alg.

FINAL EXAMINATION

PAGE 4 of 9
TIME: 2 hours

EXAMINER: Various

Values
[10] 5. Given that $\left|\begin{array}{ccc}a & b & c \\ d & e & f \\ 1 & -2 & 3\end{array}\right|=5$, find $\left|\begin{array}{ccc}a-2 & b+4 & c-6 \\ 2 a+3 d & 2 b+3 e & 2 c+3 f \\ 3 & -6 & 9\end{array}\right|$.

THE UNIVERSITY OF MANITOBA

DATE: December 8, 2006
PAPER NO: 88
DEPARTMENT \& COURSE NO: MATH 1300

EXAMINATION: Vector Geom. \& Lin. Alg.

FINAL EXAMINATION
PAGE 5 of 9

TIME: 2 hours

EXAMINER: Various

Values

6. Let Π be the plane $2 x-3 z+12=0$, and let $P(-1,1,-1)$ and $Q(1,0,1)$ be two points in \mathbb{R}^{3}.
[6] (a) Find parametric equations of the line ℓ that is perpendicular to the plane Π and that contains the point P.
[5] (b) Find the point of intersection of the line ℓ (from (a)) and the plane Π.
[4] (c) Find the distance between the point P and the plane Π.

THE UNIVERSITY OF MANITOBA

DATE: December 8, 2006
PAPER NO: 88
DEPARTMENT \& COURSE NO: MATH 1300

EXAMINATION: Vector Geom. \& Lin. Alg.

FINAL EXAMINATION

PAGE 6 of 9

TIME: 2 hours

EXAMINER: Various

Values

7. Let $\mathbf{u}=(1,3,0,-2)$ and $\mathbf{v}=(3,-1,1,-6)$.
(a) Is the set of vectors $\{\mathbf{u}, \mathbf{v}\}$ linearly independent or not? Justify your answer.
(b) Are \mathbf{u} and \mathbf{v} orthogonal or not? Justify your answer.
(c) Find all values of k such that $k \mathbf{u}$ is a unit vector.

THE UNIVERSITY OF MANITOBA

DATE: December 8, 2006
PAPER NO: 88

DEPARTMENT \& COURSE NO: MATH 1300

EXAMINATION: Vector Geom. \& Lin. Alg.

FINAL EXAMINATION

PAGE 7 of 9

TIME: 2 hours

EXAMINER: Various

Values

8. Let $A=\left[\begin{array}{rr}1 & 1 \\ 0 & -2\end{array}\right], \quad B=\left[\begin{array}{rr}2 & -1 \\ 0 & 0\end{array}\right], \quad C=\left[\begin{array}{rr}0 & 0 \\ -1 & -1\end{array}\right]$.
(a) Determine whether the set $\{A, B, C\}$ is linearly independent or not.
(b) Does $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ belong to the span of $\{A, B, C\}$? Explain.
(c) Does $D=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ belong to the span of $\{A, B, C\}$? Explain.
(d) Is the set $\{A, B, C\}$ a basis for M_{22} ? Explain.

THE UNIVERSITY OF MANITOBA

DATE: December 8, 2006
PAPER NO: 88
DEPARTMENT \& COURSE NO: MATH 1300

EXAMINATION: Vector Geom. \& Lin. Alg.

FINAL EXAMINATION

PAGE 8 of 9

TIME: 2 hours

EXAMINER: Various

Values

9. In each question below determine if W is a subspace of the vector space V :
(a) $\quad V=\mathbb{R}^{3}$ and $W=\{(x, y, z): x-2 y+z+3=0\}$.
[6]
(b) $\quad V=\mathbb{R}^{3}$ and $W=\{(2 t,-t, 0): t$ in $\mathbb{R}\}$.
[6]
(c) $\quad V=\mathbb{P}_{2}$ and $W=\left\{p(x)=a x+3 a x^{2}: a\right.$ in $\left.\mathbb{R}\right\}$.

THE UNIVERSITY OF MANITOBA

DATE: December 8, 2006
PAPER NO: 88
DEPARTMENT \& COURSE NO: MATH 1300

EXAMINATION: Vector Geom. \& Lin. Alg.

FINAL EXAMINATION

PAGE 9 of 9

TIME: 2 hours

EXAMINER: Various

Values

10. Let A be a 5×5 matrix
[4] (a) If A is invertible, find a basis and the dimension of the row space and of the null space of A.
[6] (b) If A is such that its reduced row echelon form

$$
R=\left[\begin{array}{rrrrr}
1 & -1 & 0 & 3 & 0 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Find a basis for the row space and a basis for the null space of A. What is the dimension of the column space of A ?

