THE UNIVERSITY OF MANITOBA

DATE: October 23, 2006

DEPARTMENT \& COURSE NO: 136.130
EXAMINATION: Vector Geometry \& Linear Algebra TIME: 1 hour

EXAMINERS: Various

Values

[8] 1. Solve, by Gauss-Jordan elimination, the linear system:

$$
\begin{aligned}
x-y-z & =-1 \\
-x+y+2 z & =2 \\
2 x-2 y+z & =1
\end{aligned}
$$

THE UNIVERSITY OF MANITOBA

DATE: October 23, 2006
DEPARTMENT \& COURSE NO: 136.130
EXAMINATION: Vector Geometry \& Linear Algebra

MIDTERM EXAMINATION
PAGE 2 of 6

TIME: 1 hour

EXAMINERS: Various

Values

[8] 2. Let $A=\left[\begin{array}{rr}1 & -1 \\ 1 & 2\end{array}\right], B=\left[\begin{array}{lll}2 & 2 & 2 \\ 2 & 3 & 4\end{array}\right]$ and $C=\left[\begin{array}{ll}1 & -1 \\ 0 & -1 \\ 1 & -3\end{array}\right]$.
In each of the following cases, compute the given expression or briefly explain why the expression cannot be calculated:
a) $A B$
b) $A+B$
c) $B+2 C^{T}$
d) $A B-B A$

THE UNIVERSITY OF MANITOBA

DATE: October 23, 2006
DEPARTMENT \& COURSE NO: 136.130
EXAMINATION: Vector Geometry \& Linear Algebra

EXAMINERS: Various

Values

[12] 3. Let $A=\left[\begin{array}{lll}1 & 0 & 3 \\ 1 & 1 & 3 \\ 0 & 1 & 1\end{array}\right]$.
a) Find A^{-1}.
b) Use (a) to solve the system $A \mathbf{x}=\left[\begin{array}{r}2 \\ 0 \\ -1\end{array}\right]$, where \mathbf{x} is a column matrix of
variables.

THE UNIVERSITY OF MANITOBA

DATE: October 23, 2006
DEPARTMENT \& COURSE NO: 136.130
EXAMINATION: Vector Geometry \& Linear Algebra TIME: 1 hour

EXAMINERS: Various

Values
[12] 4. Let $3 A^{-1}=\left[\begin{array}{ll}0 & 3 \\ 3 & 6\end{array}\right]$.
a) Find A.
b) If B is derived from A by adding -2 times row two to row one $\left(A \xrightarrow{R_{1} \rightarrow-2 R_{2}+R_{1}} B\right)$, find the elementary matrices E and F such that $B=E A$ and $A=F B$.

THE UNIVERSITY OF MANITOBA

DATE: October 23, 2006

DEPARTMENT \& COURSE NO: 136.130
EXAMINATION: Vector Geometry \& Linear Algebra

EXAMINERS: Various

Values

[7] 5. Let $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 0 & a \\ 1 & 4 & 1\end{array}\right]$
(a) Evaluate $\operatorname{det}(A)$ by expansion along column 2. No other method will be awarded marks. Show all your work.
b) For what value of a is A invertible?
[6] 6. Evaluate $\operatorname{det}\left[\begin{array}{rrr}0 & 2 & -2 \\ 1 & 2 & 4 \\ 1 & 3 & -1\end{array}\right]$ by row reduction to the determinant of an upper triangular matrix. No other method will be awarded marks. Show all your work.

THE UNIVERSITY OF MANITOBA

DATE: October 23, 2006
DEPARTMENT \& COURSE NO: 136.130
EXAMINATION: Vector Geometry \& Linear Algebra

MIDTERM EXAMINATION

PAGE 6 of 6

TIME: 1 hour

EXAMINERS: Various

Values

[7] 7. Let A be a 4×4 matrix, such that $\operatorname{det}(A)=2$.
a) Write the reduced row echelon form of A.
b) Find all of the solutions of the linear system $A \mathbf{x}=\mathbf{0}$ (where \mathbf{x} is a column matrix of variables, and $\mathbf{0}$ is a column matrix of zeroes).
c) Find $\operatorname{det}\left(-A^{T}\right)$.
d) Find $\operatorname{det}(B)$ if you know that $\operatorname{det}\left(B A^{-1}\right)=1$.

