Last Name (Print) \qquad

First Name (Print) \qquad
I understand that cheating is a serious offense.
Signature: \qquad

Student Number \qquad

Room \qquad Seat Number \qquad
THE UNIVERSITY OF MANITOBA DEPARTMENT OF MATHEMATICS
136.130 Vector Geometry and Linear Algebra

Final Exam
Paper No: 411
Date: Monday, April 17, 2006
Time: 6:00-8:00 PM

Identify your section

	Section	Instructor	Slot	Time	Room
\square	L05	K. Kopotun	5	TTh 10:00-11:15am	208 Armes
\square	L06	G. I. Moghaddam	8	MWF 1:30-2:20pm	204 Armes
\square	L07	G. I. Moghaddam	12	MWF 3:30-4:20pm	208 Armes
\square	L08	C. Platt	15	TTh 4:00-5:15pm	200 Armes
\square	L09	J. Sichler	E2	T 7:00-10:00pm	204 Armes
\square	Other	(challenge, deferred, etc.)			

Instructions

Fill in all the information above.
This is a two-hour exam.
No calculators, texts, notes, or other aids are permitted.
Show your work clearly for full marks.
This exam has 11 questions on 11 numbered pages, for a total of 100 points. Check now that you have a complete exam.

DO NOT WRITE
IN THIS COLUMN

1	18
2	
	18
3	
	/6
4	
	/10
5	
	18
6	
	/12
7	
	19
8	
	$/ 10$
9	
	/11
10	
	/12
11	

THE UNIVERSITY OF MANITOBA

Monday, April 17, 2006, 6:00-8:00 PM
Final Exam
PAPER NO: 411
COURSE: Mathematics 136.130 Vector Geometry and Linear Algebra
TIME: 2 HOURS
EXAMINERS: Kopotun, Moghaddam, Platt, Sichler
[Values]

1. Let $A=\left[\begin{array}{cccc}1 & 0 & 2 & 1 \\ 0 & 3 & -3 & 0 \\ 2 & 0 & 4 & 3\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}1 \\ 12 \\ 7\end{array}\right]$.
[5] (a) Find the reduced row echelon form (RREF) of the augmented matrix $[A \mid \mathbf{b}]$.
[3] (b) Find all solutions of the linear system $A \mathbf{x}=\mathbf{b}$.

THE UNIVERSITY OF MANITOBA

Monday, April 17, 2006, 6:00-8:00 PM
Final Exam
PAPER NO: 411
PAGE NO: 2 of 11
COURSE: Mathematics 136.130 Vector Geometry and Linear Algebra
TIME: 2 HOURS
EXAMINERS: Kopotun, Moghaddam, Platt, Sichler
[Values]
2. Let $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 0\end{array}\right], B=\left[\begin{array}{lll}2 & 1 & 0 \\ 3 & 0 & 1\end{array}\right], C=\left[\begin{array}{l}2 \\ 3 \\ 7\end{array}\right], D=\left[\begin{array}{l}2 \\ 2\end{array}\right], E=\left[\begin{array}{ll}2 & 1 \\ 1 & 2 \\ 3 & 3\end{array}\right], F=\left[\begin{array}{ll}0 & 1 \\ 3 & 0\end{array}\right]$.

For each case, determine, without actually performing any matrix algebra, whether the given expression exists. If it does not exist, give a reason why not. If it exists, evaluate the expression.
[2] (a) $2 A C^{T}-B^{2}$
[2] (b) $\left(A^{T}-E\right) D$
[2] (c) $A C-3 D$
[2] (d) $E^{T} A+2 F$

THE UNIVERSITY OF MANITOBA

Monday, April 17, 2006, 6:00-8:00 PM
Final Exam
PAPER NO: 411
COURSE: Mathematics 136.130 Vector Geometry and Linear Algebra
TIME: 2 HOURS
EXAMINERS: Kopotun, Moghaddam, Platt, Sichler
[Values] 3. Assume A, B, C are $n \times n$ matrices.
[3] (a) If A is an invertible matrix, show that $A B=A C$ implies $B=C$.
[3] (b) Let $D=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$ and $E=\left[\begin{array}{cc}2 & -3 \\ -2 & 3\end{array}\right]$. Calculate $D E$, and use that information to find a matrix F such that $D E=D F$, but $E \neq F$.

THE UNIVERSITY OF MANITOBA

Monday, April 17, 2006, 6:00-8:00 PM
Final Exam
PAPER NO: 411
PAGE NO: 4 of 11
COURSE: Mathematics 136.130 Vector Geometry and Linear Algebra
TIME: 2 HOURS
EXAMINERS: Kopotun, Moghaddam, Platt, Sichler
[Values]
4. Let $A=\left[\begin{array}{cccc}2 & 0 & 0 & 0 \\ 0 & 2 & 5 & -2 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 3\end{array}\right]$.
[2] (a) Find $\operatorname{det}(A)$.
[6] (b) Find the missing entries, a and b in the adjoint : $\operatorname{adj}(A)=\left[\begin{array}{cccc}-18 & 0 & 0 & 0 \\ 0 & -18 & \boxed{b} & -12 \\ 0 & 0 & 12 & 0 \\ \square a & 0 & 0 & -12\end{array}\right]$
[2] (c) Find A^{-1} using the results of (a) and (b).

THE UNIVERSITY OF MANITOBA

Monday, April 17, 2006, 6:00-8:00 PM
Final Exam
PAPER NO: 411
COURSE: Mathematics 136.130 Vector Geometry and Linear Algebra
TIME: 2 HOURS
EXAMINERS: Kopotun, Moghaddam, Platt, Sichler
[Values]
[8] 5. Use Cramer's rule to find z, where

$$
\begin{array}{r}
3 x-2 z=1 \\
2 x-y+4 z=2 \\
x+y-z=0
\end{array}
$$

Note: There is no need to find x or y. No marks for any other method.

THE UNIVERSITY OF MANITOBA

Monday, April 17, 2006, 6:00-8:00 PM
Final Exam
PAPER NO: 411
COURSE: Mathematics 136.130 Vector Geometry and Linear Algebra
TIME: 2 HOURS
EXAMINERS: Kopotun, Moghaddam, Platt, Sichler
[Values]
6. In \mathbb{R}^{3} let L be the line through points $P(5,0,3)$ and $Q(6,5,2)$.
[4] (a) Find equations, in both vector form and parametric form, of the line L.
[4] (b) Find the point of intersection of the line L and the plane with equation $x+y+z+2=0$.
[4] (c) Find the distance from the point $(3,-8,-1)$ to the plane with equation $x+y+z+2=0$.

THE UNIVERSITY OF MANITOBA

Monday, April 17, 2006, 6:00-8:00 PM
Final Exam
PAPER NO: 411
COURSE: Mathematics 136.130 Vector Geometry and Linear Algebra
TIME: 2 HOURS
EXAMINERS: Kopotun, Moghaddam, Platt, Sichler
[Values]
[9] 7. Find an equation of the plane containing the points $P(1,1,1), Q(2,2,0)$, and $R(3,0,0)$. Express your answer in the general form $a x+b y+c z+d=0$.

THE UNIVERSITY OF MANITOBA

Monday, April 17, 2006, 6:00-8:00 PM
Final Exam
PAPER NO: 411
COURSE: Mathematics 136.130 Vector Geometry and Linear Algebra
EXAMINERS: Kopotun, Moghaddam, Platt, Sichler
[Values]
8. P_{3} is the vector space of polynomials of the form $a+b x+c x^{2}+d x^{3}$.

Let $\mathbf{p}_{1}=1+x+x^{3}, \mathbf{p}_{2}=x-x^{2}$, and $\mathbf{p}_{3}=1-x+x^{2}-x^{3}$.
[5] (a) Show that $\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}$ are linearly independent.
[3] (b) Explain why $\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right\}$ cannot $\operatorname{span} P_{3}$.
[2] (c) Let $W=\operatorname{span}\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right\}$. Find the dimension of W, and justify your answer.

THE UNIVERSITY OF MANITOBA

Monday, April 17, 2006, 6:00-8:00 PM
Final Exam
PAPER NO: 411
PAGE NO: 9 of 11
COURSE: Mathematics 136.130 Vector Geometry and Linear Algebra
TIME: 2 HOURS
EXAMINERS: Kopotun, Moghaddam, Platt, Sichler
[Values]
9. In each question, determine whether the given set W is a subspace of the vector space V, and justify your answer.
[3] (a) $V=\mathbb{R}^{2}$ and W is the set of all vectors $\mathbf{v}=(a, b)$ such that $a b \leq 0$.
[3] (b) V is the space of all 2×2 matrices and W is the set of all invertible 2×2 matrices.
[5] (c) V is the space of all 3×3 matrices and W consists of all matrices of the form $\left[\begin{array}{lll}a & a & a \\ b & b & b \\ 0 & 0 & 0\end{array}\right]$.

THE UNIVERSITY OF MANITOBA

Monday, April 17, 2006, 6:00-8:00 PM
Final Exam
PAPER NO: 411
PAGE NO: 10 of 11
COURSE: Mathematics 136.130 Vector Geometry and Linear Algebra
TIME: 2 HOURS
EXAMINERS: Kopotun, Moghaddam, Platt, Sichler
[Values]
10. Given (you don't have to show this!):
$\begin{aligned} & \text { The reduced row } \\ & \text { echelon form of }\end{aligned} A=\left[\begin{array}{rrrrr}2 & 0 & 4 & 0 & 8 \\ 3 & 1 & 9 & 0 & 14 \\ -1 & 1 & 1 & 0 & -2 \\ -2 & 0 & -4 & 1 & -8\end{array}\right]$ is $R=\left[\begin{array}{lllll}1 & 0 & 2 & 0 & 4 \\ 0 & 1 & 3 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
Find a basis for each subspace below.
[1] (a) The row space of R.
[2] (b) The row space of A.
[1] (c) The column space of R.
[2] (d) The column space of A.
[4] (e) The nullspace of R.
[2] (f) The nullspace of A.

THE UNIVERSITY OF MANITOBA

Monday, April 17, 2006, 6:00-8:00 PM
Final Exam
PAPER NO: 411
COURSE: Mathematics 136.130 Vector Geometry and Linear Algebra
TIME: 2 HOURS
EXAMINERS: Kopotun, Moghaddam, Platt, Sichler
[Values]
[6] 11. Let V be a vector space, and let \mathbf{u}, \mathbf{v}, and \mathbf{w} be vectors in V.
Show that $\mathbf{x}_{1}=\mathbf{u}-\mathbf{v}, \mathbf{x}_{2}=\mathbf{v}-\mathbf{w}$, and $\mathbf{x}_{3}=\mathbf{w}-\mathbf{u}$ form a linearly dependent set.

