Last Name	(Print)
-----------	---------

First Name (Print)_____

I understand that cheating is a serious offense.

Signature:_____

Student Number_____

Room _____ Seat Number_____

THE UNIVERSITY OF MANITOBA DEPARTMENT OF MATHEMATICS

136.130 Vector Geometry and Linear Algebra Final Exam

Paper No: 411 Date: Monday, April 17, 2006 Time: 6:00–8:00 PM

DO NOT WRITE

		Identify your s		DO NOT WINTE		
	Section	Instructor	Slot	Time	Room	IN THIS COLUMN
	L05	K. Kopotun	5	TTh 10:00–11:15am	208 Armes	1 /8
	L06	G. I. Moghaddam	8	MWF 1:30-2:20pm	204 Armes	2 /8
	L07	G. I. Moghaddam	12	MWF 3:30-4:20pm	208 Armes	3 /6
	L08	C. Platt	15	TTh 4:00–5:15pm	200 Armes	4 /10
	L09	J. Sichler	E2	T 7:00–10:00pm	204 Armes	5 /8
	Other ((challenge, deferred, etc.)				6 /12 7
		Instructio			/9 8	
Fill in	all the inf	ormation above.				/10
This is	a two-hoi	ur exam.				9 /11
No cal	culators, i	texts, notes, or other aids a	re per	mitted.		10
Show y	our work	z clearly for full marks.				/12
This ex points.	am has 1. Check n o	l questions on 11 numbere w that you have a comple		11 /6		

11 \cdot 1 1 IC 1

 Monday, April 17, 2006, 6:00–8:00 PM
 Final Exam

 PAPER NO: 411
 PAGE NO: 1 of 11

 COURSE: Mathematics 136.130 Vector Geometry and Linear Algebra
 TIME: 2 HOURS

 EXAMINERS: Kopotun, Moghaddam, Platt, Sichler

[Values] **1.** Let $A = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 3 & -3 & 0 \\ 2 & 0 & 4 & 3 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 12 \\ 7 \end{bmatrix}$.

[5] (a) Find the reduced row echelon form (RREF) of the augmented matrix $[A \mid b]$.

Monday, April 17, 2006, 6:00–8:00 PM PAPER NO: 411 Final Exam PAGE NO: 2 of 11 TIME: 2 HOURS

COURSE: Mathematics 136.130 Vector Geometry and Linear Algebra

EXAMINERS: Kopotun, Moghaddam, Platt, Sichler

2. Let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$, $C = \begin{bmatrix} 2 \\ 3 \\ 7 \end{bmatrix}$, $D = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$, $E = \begin{bmatrix} 2 & 1 \\ 1 & 2 \\ 3 & 3 \end{bmatrix}$, $F = \begin{bmatrix} 0 & 1 \\ 3 & 0 \end{bmatrix}$.

For each case, determine, *without actually performing any matrix algebra*, whether the given expression exists. If it does not exist, give a reason why not. If it exists, evaluate the expression.

[2] (a)
$$2AC^T - B^2$$

[2] **(b)** $(A^T - E)D$

[2] (c) AC - 3D

[2] (d) $E^T A + 2F$

Monday, April 17, 2006, 6:00-	-8:00 PM	Final Exam
PAPER NO: 411		PAGE NO: 3 of 11
COURSE: Mathematics 136.	130 Vector Geometry and Linear Algebra	TIME: 2 HOURS
	EXAMINERS: Kopo	tun, Moghaddam, Platt, Sichler

[Values]

3. Assume A, B, C are $n \times n$ matrices.

[3] (a) If A is an *invertible* matrix, show that AB = AC implies B = C.

[3] (b) Let $D = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ and $E = \begin{bmatrix} 2 & -3 \\ -2 & 3 \end{bmatrix}$. Calculate DE, and use that information to find a matrix F such that DE = DF, but $E \neq F$.

[Values]		
	EXAMINERS: Kopotun	, Moghaddam, Platt, Sichler
	COURSE: Mathematics 136.130 Vector Geometry and Linear Algebra	TIME: 2 HOURS
	PAPER NO: 411	PAGE NO: 4 of 11
	Monday, April 17, 2006, 6:00–8:00 PM	Final Exam

4. Let
$$A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 5 & -2 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$
.

[2] (a) Find det(A).

[6] (b) Find the missing entries, a and b in the adjoint : adj

	-18	0	0	0	
(A) =	0	-18	b	-12	
(A) =	0	0	12	0	
	a	0	0	-12	

[2] (c) Find A^{-1} using the results of (a) and (b).

Monday, April 17, 2006, 6:00–8:00 PMFinal ExamPAPER NO: 411PAGE NO: 5 of 11COURSE: Mathematics 136.130 Vector Geometry and Linear AlgebraTIME: 2 HOURSEXAMINERS: Kopotun, Moghaddam, Platt, Sichler

[Values] [8]

5. Use Cramer's rule to find z, where

$$3x - 2z = 1$$
$$2x - y + 4z = 2$$
$$x + y - z = 0$$

Note: There is no need to find x or y. No marks for any other method.

EXAMINERS: Kopotun,	Moghaddam, Platt, Sichler
COURSE: Mathematics 136.130 Vector Geometry and Linear Algebra	TIME: 2 HOURS
PAPER NO: 411	PAGE NO: 6 of 11
Monday, April 17, 2006, 6:00–8:00 PM	Final Exam

[Values] 6. In \mathbb{R}^3 let L be the line through points P(5,0,3) and Q(6,5,2).

[4] (a) Find equations, in both vector form and parametric form, of the line L.

[4] (b) Find the point of intersection of the line L and the plane with equation x + y + z + 2 = 0.

[4] (c) Find the distance from the point (3, -8, -1) to the plane with equation x + y + z + 2 = 0.

Monday, April 17, 2006, 6:00–8:00 PM	Final Exam
PAPER NO: 411	PAGE NO: 7 of 11
COURSE: Mathematics 136.130 Vector Geometry and Lin	near Algebra TIME: 2 HOURS
EXAMIN	IERS: Kopotun, Moghaddam, Platt, Sichler

[Values] [9] 7. Find an equation of the plane containing the points P(1, 1, 1), Q(2, 2, 0), and R(3, 0, 0). Express your answer in the general form ax + by + cz + d = 0.

Monday, April 17, 2006, 6:00–8:00 PMFinal ExamPAPER NO: 411PAGE NO: 8 of 11COURSE: Mathematics 136.130 Vector Geometry and Linear AlgebraTIME: 2 HOURSEXAMINERS: Kopotun, Moghaddam, Platt, Sichler

[Values]

8. P_3 is the vector space of polynomials of the form $a + bx + cx^2 + dx^3$.

Let $\mathbf{p}_1 = 1 + x + x^3$, $\mathbf{p}_2 = x - x^2$, and $\mathbf{p}_3 = 1 - x + x^2 - x^3$.

[5] (a) Show that p_1, p_2, p_3 are linearly independent.

[3] (b) Explain why $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ cannot span P_3 .

[2] (c) Let $W = \operatorname{span}\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$. Find the dimension of W, and justify your answer.

Monday, April 17, 2006, 6:00–8:00 PM	Final Exam
PAPER NO: 411	PAGE NO: 9 of 11
COURSE: Mathematics 136.130 Vector Geometry and Linear Algebra	TIME: 2 HOURS
EXAMINERS: Kopotun,	Moghaddam, Platt, Sichler

[Values]

- **9.** In each question, determine whether the given set W is a subspace of the vector space V, and justify your answer.
- [3] (a) $V = \mathbb{R}^2$ and W is the set of all vectors $\mathbf{v} = (a, b)$ such that $ab \leq 0$.

[3] (b) V is the space of all 2×2 matrices and W is the set of all *invertible* 2×2 matrices.

			a	a	a
[5]	(c)	V is the space of all 3×3 matrices and W consists of all matrices of the form	b	b	b
			0	0	0

Monday, April 17, 2006, 6:00–8:00 PMFinal ExamPAPER NO: 411PAGE NO: 10 of 11COURSE: Mathematics 136.130 Vector Geometry and Linear AlgebraTIME: 2 HOURSEXAMINERS: Kopotun, Moghaddam, Platt, Sichler

[Values]

10. Given (you don't have to show this!):

	2	0	4	0	8		[1	0	2	0	4	
The reduced row $_{\Lambda}$ _	3	1	9	0	14	ic D -	0	1	3	0	2	
echelon form of $A =$	-1	1	1	0	-2	Is $n =$	0	0	0	1	0	
	-2	0	-4	1	-8		0	0	0	0	0	

Find a basis for each subspace below.

- [1] (a) The row space of R.
- [2] (b) The row space of A.
- [1] (c) The column space of R.
- [2] (d) The column space of A.
- [4] (e) The nullspace of R.

Monday, April 17, 2006, 6:00–8:00 PMFinal ExamPAPER NO: 411PAGE NO: 11 of 11COURSE: Mathematics 136.130 Vector Geometry and Linear AlgebraTIME: 2 HOURSEXAMINERS: Kopotun, Moghaddam, Platt, Sichler

[Values]

[6] **11.** Let V be a vector space, and let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in V.

Show that $x_1 = u - v$, $x_2 = v - w$, and $x_3 = w - u$ form a linearly dependent set.