FAMILY NAME: (Print in ink) \qquad
FIRST NAME: (Print in ink) \qquad
STUDENT NUMBER: \qquad
SEAT NUMBER: \qquad
SIGNATURE: (Print in ink)
(I understand that cheating is a serious offense)

Please indicate your instructor and section by checking the appropriate box below:

\square	L01	G.I. Moghaddam	M,W,F	9:30-10:20
\square	L02	J. Arino	Tues, Thurs	8:30-9:50
\square	L03	G.I. Moghaddam	M,W,F	1:30-2:20
\square	L04	N. Zorboska	Tues, Thurs	11:30-12:50
\square	L91	Challenge for Credit		
\square	SJR			

INSTRUCTIONS TO STUDENTS:

This is a 2 hour exam. Please show your work clearly.

No texts, notes, or other aids are permitted. No calculators, cellphones or electronic translators permitted.

This exam has a title pages, 9 pages of questions and also 2 blank pages for rough work. Please check that you have all the pages. You may remove the blank pages if you want, but be careful not to loosen the staples.

The value of each question is indicated in the lefthand margin beside the statement of the question. The total value of all questions is 100 points.

Answer all questions on the exam paper in the space provided beneath the

Question	Points	Score
1	10	
2	6	
3	12	
4	7	
5	8	
6	15	
7	11	
8	11	
9	8	
10	12	
Total:	100	

INDICATE that your work is continued.

UNIVERSITY OF MANITOBA

DATE: December 19, 2005
FINAL EXAMINATION
PAPER \# 514
DEPARTMENT \& COURSE NO: 136.130
EXAMINATION: Vector Geometry and Linear Algebra
PAGE: 1 of 9
TIME: 2 hour
EXAMINER: Various
[10] 1. Each of the following matrices is the augmented matrix of a linear system. Complete the table for each system.

$$
A=\left[\begin{array}{cc|c}
1 & 0 & -2 \\
0 & 1 & 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{llll|l}
1 & 2 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], \quad C=\left[\begin{array}{cccc|c}
1 & -1 & 2 & 0 & 4 \\
1 & -1 & 2 & 0 & 5 \\
0 & 0 & -2 & 0 & 4
\end{array}\right]
$$

Augmented matrix	number of equations	number of variables	number of solutions	number of parameters (if applicable)
A				
B				
C				

[6] 2. If $\operatorname{det}\left[\begin{array}{ccc}1 & -2 & 4 \\ a & b & c \\ 3 & 5 & -6\end{array}\right]=-4$, use properties of determinant to evaluate
$\operatorname{det}\left[\begin{array}{ccc}1 & -2 & 4 \\ 3 & 5 & -6 \\ 2(a-1) & 2(b+2) & 2(c-4)\end{array}\right]$.

UNIVERSITY OF MANITOBA

DATE: December 19, 2005
FINAL EXAMINATION
PAPER \# 514
DEPARTMENT \& COURSE NO: 136.130
PAGE: 2 of 9
TIME: 2 hour
EXAMINATION: Vector Geometry and Linear Algebra
[12] 3. Let $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & -2 & 1\end{array}\right]$ and let B be a 3×3 matrix with $\operatorname{det}(B)=-2$. Find each of the following:
(a) $\operatorname{det}\left(2 A^{8} B^{-1}\right)$
(b) $\operatorname{det}\left(A D B D^{-1}\right)$ (where D is a 3×3 matrix)
(c) The numbers a, b, and c, such that

$$
\operatorname{adj}(A)=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & a \\
0 & b & c
\end{array}\right]
$$

(d) A^{-1}

UNIVERSITY OF MANITOBA

DATE: December 19, 2005
FINAL EXAMINATION
PAPER \# 514
DEPARTMENT \& COURSE NO: 136.130
EXAMINATION: Vector Geometry and Linear Algebra
PAGE: 3 of 9
TIME: 2 hour
EXAMINER: Various
[7] 4. Let $A=\left[\begin{array}{cccc}1 & 1 & 6 & 0 \\ 0 & 1 & 2 & 1 \\ -1 & 0 & -1 & 2 \\ 0 & 3 & 0 & 0\end{array}\right]$. Use Cramer's Rule to solve the linear system

$$
A\left[\begin{array}{l}
x \\
y \\
z \\
u
\end{array}\right]=\left[\begin{array}{l}
0 \\
4 \\
2 \\
0
\end{array}\right] \text { for } \mathbf{z} \text { only. }
$$

UNIVERSITY OF MANITOBA

DATE: December 19, 2005
FINAL EXAMINATION
PAPER \# 514
DEPARTMENT \& COURSE NO: 136.130
EXAMINATION: Vector Geometry and Linear Algebra
PAGE: 4 of 9
TIME: 2 hour
EXAMINER: Various
[8] 5. Let $A=\left[\begin{array}{cccc}1 & 0 & 1 & -4 \\ -1 & 3 & 5 & 6 \\ 2 & 4 & -1 & 1\end{array}\right]$ and $B=\left[\begin{array}{cccc}1 & 0 & 1 & -4 \\ 2 & 4 & -1 & 1 \\ 0 & 3 & 6 & 2\end{array}\right]$

Find elementary matrices E_{1} and E_{2} such that $B=E_{2} E_{1} A$

UNIVERSITY OF MANITOBA

DATE: December 19, 2005
FINAL EXAMINATION
PAPER \# 514
PAGE: 5 of 9
DEPARTMENT \& COURSE NO: 136.130
TIME: 2 hour
EXAMINATION: Vector Geometry and Linear Algebra
[15] 6 . Let $\mathbf{u}=(2,-1,0), \quad \mathbf{v}=(-1,1,1)$ and $\mathbf{w}=(1,0,-1)$. Find, by showing all your work:
(a) $p r o j_{\mathbf{v}} \mathbf{u}$.
(b) The area of the parallelogram determined by \mathbf{u} and \mathbf{v}.
(c) The volume of the parallelepiped determined by \mathbf{u}, \mathbf{v} and \mathbf{w}.
(d) All of the unit vectors that are parallel to \mathbf{u}.
(e) All vectors $\mathbf{x}=(\mathrm{a}, \mathrm{b}, \mathrm{c})$ that are orthogonal to \mathbf{u}.

UNIVERSITY OF MANITOBA

DATE: December 19, 2005
FINAL EXAMINATION
PAPER \# 514
DEPARTMENT \& COURSE NO: 136.130
PAGE: 6 of 9
TIME: 2 hour
EXAMINATION: Vector Geometry and Linear Algebra
[11] 7. Two lines are given by their parametric equations:
$l_{1}:\left\{\begin{array}{l}x=4+t \\ y=-1 \\ z=2+t\end{array} \quad\right.$ and $\quad l_{2}:\left\{\begin{array}{l}x=2 \\ y=3-2 s \\ z=-6+3 s\end{array} \quad\right.$, for t and s in \mathbb{R}.
(a) Find the point of intersection of l_{1} and l_{2}.
(b) Find a vector orthogonal to both l_{1} and l_{2}.
(c) Find an equation of the plane containing l_{1} and l_{2}.

UNIVERSITY OF MANITOBA

DATE: December 19, 2005
FINAL EXAMINATION
PAPER \# 514
DEPARTMENT \& COURSE NO: 136.130
EXAMINATION: Vector Geometry and Linear Algebra
PAGE: 7 of 9
TIME: 2 hour
[11] 8. Let M_{22} denote the vector space of all 2×2 matrices and let O denote the zero 2×2 matrix.
(a) If B is a fixed 2×2 matrix, show that the set W of all 2×2 matrices A such that $A B=O$, i.e. $W=\left\{A\right.$ in $\left.\mathrm{M}_{22}: A B=O\right\}$, is a subspace of M_{22}.
(b) If $B=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$, find a basis for the vector space W in part (a).

UNIVERSITY OF MANITOBA

DATE: December 19, 2005
FINAL EXAMINATION
PAPER \# 514
DEPARTMENT \& COURSE NO: 136.130
EXAMINATION: Vector Geometry and Linear Algebra
PAGE: 8 of 9
TIME: 2 hour EXAMINER: Various
[8] 9. Let $\mathbf{u}=(1,0,1,0), \mathbf{v}=(1,-1,1,0), \mathbf{w}=(1,0,0,0)$.
(a) Is the set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ linearly independent? Show your work.
(b) Does the set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ span \mathbb{R}^{4} ? Explain why.

UNIVERSITY OF MANITOBA

DATE: December 19, 2005
FINAL EXAMINATION
PAPER \# 514
PAGE: 9 of 9
TIME: 2 hour
DEPARTMENT \& COURSE NO: 136.130
EXAMINATION: Vector Geometry and Linear Algebra
[12] 10. (a) Let A be a 3×7 matrix. Answer the following questions by filling in the blanks:
i. The column space of A is a subspace of \mathbb{R}^{n} with n equal to \qquad
ii. If the rows of A are linearly independent, the dimension of the row space of A is equal to \qquad -
iii. If the rows of A are linearly independent, the dimension of the column space of A is equal to \qquad .
iv. If the rows of A are linearly independent, the dimension of the null space of A is equal to \qquad _.
v. If A is the zero 3×7 matrix, the dimension of the null space of A is equal to \qquad _.
(b) If B is a matrix such that its reduced row echelon form equals

$$
\left[\begin{array}{cccccc}
1 & -1 & 0 & -2 & 0 & 3 \\
0 & 0 & 1 & 2 & 5 & -1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

find a basis for the row space of B.
(c) If C is a matrix such that its reduced row echelon form equals

$$
\left[\begin{array}{ccccc}
1 & 2 & 3 & 0 & -2 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

find a basis for the null space of C. Show your work.

