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1.[10] Each of the following matrices is the augmented matrix of a linear system. Com-
plete the table for each system.

A =


1 0 −2
0 1 3
0 0 0
0 0 0

 , B =


1 2 0 1 1
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

, C =

 1 −1 2 0 4
1 −1 2 0 5
0 0 −2 0 4



Augmented matrix number of
equations

number of
variables

number of
solutions

number of parameters
(if applicable)

A

B

C

2.[6] If det

 1 −2 4

a b c

3 5 −6

 = −4, use properties of determinant to evaluate

det

 1 −2 4

3 5 −6

2(a− 1) 2(b + 2) 2(c− 4)

.
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3.[12] Let A =

 1 0 0

0 −1 0

0 −2 1

 and let B be a 3 × 3 matrix with det(B) = −2. Find

each of the following:

(a) det (2A8B−1)

(b) det
(
ADBD−1

)
(where D is a 3× 3 matrix)

(c) The numbers a, b, and c, such that

adj(A) =

 −1 0 0

0 1 a

0 b c



(d) A−1
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4.[7] Let A =


1 1 6 0

0 1 2 1

−1 0 −1 2

0 3 0 0

. Use Cramer’s Rule to solve the linear system

A


x

y

z

u

 =


0

4

2

0

 for z only.
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5.[8] Let A =

 1 0 1 −4

−1 3 5 6

2 4 −1 1

 and B =

 1 0 1 −4

2 4 −1 1

0 3 6 2



Find elementary matrices E1 and E2 such that B = E2E1A
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6.[15] Let u = (2,−1, 0), v = (−1, 1, 1) and w = (1, 0,−1).
Find, by showing all your work:

(a) projvu.

(b) The area of the parallelogram determined by u and v.

(c) The volume of the parallelepiped determined by u,v and w.

(d) All of the unit vectors that are parallel to u.

(e) All vectors x = (a, b, c) that are orthogonal to u.



DATE: December 19, 2005
PAPER # 514
DEPARTMENT & COURSE NO: 136.130
EXAMINATION: Vector Geometry and Linear Algebra

UNIVERSITY OF MANITOBA
FINAL EXAMINATION

PAGE: 6 of 9
TIME: 2 hour

EXAMINER: Various

7.[11] Two lines are given by their parametric equations:

l1 :


x = 4 + t

y = −1

z = 2 + t

and l2 :


x = 2

y = 3− 2s

z = −6 + 3s

, for t and s in R.

(a) Find the point of intersection of l1 and l2.

(b) Find a vector orthogonal to both l1 and l2.

(c) Find an equation of the plane containing l1 and l2.
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8.[11] Let M22 denote the vector space of all 2 × 2 matrices and let O denote the zero
2× 2 matrix.

(a) If B is a fixed 2×2 matrix, show that the set W of all 2×2 matrices A such
that AB = O, i.e. W = {A in M22 : AB = O}, is a subspace of M22.

(b) If B =

[
1 1

0 0

]
, find a basis for the vector space W in part (a).
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9.[8] Let u = (1, 0, 1, 0), v = (1,−1, 1, 0), w = (1, 0, 0, 0).

(a) Is the set {u,v,w} linearly independent? Show your work.

(b) Does the set {u,v,w} span R4? Explain why.
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10. (a)[12] Let A be a 3 × 7 matrix. Answer the following questions by filling in the
blanks:

i. The column space of A is a subspace of Rn with n equal to .

ii. If the rows of A are linearly independent, the dimension of the row space
of A is equal to .

iii. If the rows of A are linearly independent, the dimension of the column
space of A is equal to .

iv. If the rows of A are linearly independent, the dimension of the null space
of A is equal to .

v. If A is the zero 3 × 7 matrix, the dimension of the null space of A is
equal to .

(b) If B is a matrix such that its reduced row echelon form equals 1 −1 0 −2 0 3

0 0 1 2 5 −1

0 0 0 0 0 0

,

find a basis for the row space of B.

(c) If C is a matrix such that its reduced row echelon form equals

 1 2 3 0 −2

0 0 0 1 3

0 0 0 0 0


find a basis for the null space of C. Show your work.


