EXAMINER: see below

NAME: (Print in ink) \qquad

STUDENT NUMBER: \qquad
SIGNATURE: (in ink)
(I understand that cheating is a serious offense)

Please indicate your instructor and section by placing a check mark in the appropriate box below.

- Section L05
V. Charette

Tu, Th 10:00 am - 11:15 am
208 Armes

- Section L06
N. Zorboska

M, W, F 1:30 pm- 2:20 pm
204 Armes

- Section L07
K. Doerksen M, W, F 1:30 pm-2:20 pm

223 Wallace

- Section L08
R.S.D. Thomas M, W, F 2:30 pm- 3:20 pm

208 Armes

- Section L09
J. Sichler Tues. Evening
- Section L92

Challenge for credit (SJR)

INSTRUCTIONS TO STUDENTS:

This is a 1 hour exam. Please show your work clearly. Please justify your answers, unless otherwise stated.

No calculators or other aids are permitted.
This exam has a title page, 5 pages of questions and also 2 blank pages for rough work. Please check that you have all the pages.

The value of each question is indicated in the left-hand margin beside the statement of the question. The total value of all questions is 60 .

Answer all questions on the exam paper in the space provide beneath the question. If you need more room, you may continue your work on the reverse side of the page, but CLEARLY INDICATE that your work is continued.

204 Armes

DO NOT WRITE IN

 THIS COLUMN1.

/12
2.

16
3.

19
4.
/ 4
5.

17
6.

111
7.
/11
TOTAL

DATE: February 24, 2005
DEPARTMENT \& COURSE NO. $\underline{136.130}$
EXAMINATION: Vector Geometry \& Linear Algebra

Midterm Examination
PAGE NO: 1 of 5
TIME: 1 Hour
(12) 1. Solve the following system by Gauss-Jordan elimination:

$$
\begin{aligned}
& 3 x_{1}+6 x_{2} \quad-3 x_{4}=0 \\
& 2 x_{1}+4 x_{2}+x_{3}+x_{4}=0 \\
& \mathrm{x}_{1}+2 \mathrm{x}_{2}-\mathrm{x}_{3}+4 \mathrm{x}_{4}=0
\end{aligned}
$$

No marks will be given for any other method.

DATE: February 24, 2005
DEPARTMENT \& COURSE NO. $\underline{136.130}$
EXAMINATION: Vector Geometry \& Linear Algebra

Midterm Examination
PAGE NO: 2 of 5
TIME: 1 Hour
(6) 2. a) Find the determinant of $\mathrm{M}=\left[\begin{array}{ccc}-2 & \sqrt{3} & 4 \\ 0 & 1 & 0 \\ 0 & 0 & 5\end{array}\right]$.
b) Suppose A is a 3×3 matrix that is invertible, and that it can be put into rowechelon form by the following sequence of elementary row operations:

1) add $\sqrt{2}$ times row 1 to row 2 ;
2) permute rows 2 and 3 ;
3) multiply row 3 by $\sqrt{5}$.

Find the determinant of A.
(9) 3. Let $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$. Express A^{-1} as an explicit product of elementary matrices.

DATE: February 24, 2005
DEPARTMENT \& COURSE NO. $\underline{136.130}$
EXAMINATION: Vector Geometry \& Linear Algebra

Midterm Examination
PAGE NO: 3 of 5
TIME: 1 Hour
(4) 4. Let A, B and C be $n \times n$ matrices and suppose that $2 A B-3 A C=I_{n}$. Indicate how you can tell that A^{-1} exists, and find A^{-1} in terms of B and C.
(7) 5. Let $X=\left[x_{i j}\right]$ be a 2×2 matrix. Given that $X+X^{T}=0$ and $x_{12}=7$, find X.

DATE: February 24, 2005
DEPARTMENT \& COURSE NO. $\underline{136.130}$
EXAMINATION: Vector Geometry \& Linear Algebra

Midterm Examination
PAGE NO: 4 of 5
TIME: 1 Hour
(11) 6. Find the inverse of the following matrix by row reduction:
$\left[\begin{array}{rrr}2 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1\end{array}\right]$

No marks will be given for any other method.

DATE: February 24, 2005
Midterm Examination
DEPARTMENT \& COURSE NO. $\underline{136.130}$
EXAMINATION: Vector Geometry \& Linear Algebra

PAGE NO: 5 of 5
TIME: 1 Hour
(11) 7. Let $A=\left[\begin{array}{rrr}2 & 2 & 0 \\ 2 & 0 & 2 \\ -2 & 2 & 2\end{array}\right]$. The adjoint of A is partially computed as shown. Enter the two missing numbers in the boxes.

$$
\text { Adj } A=\left[\begin{array}{ccc}
-4 & -4 & \square \\
\square & -4 & -4 \\
4 & -8 & -4
\end{array}\right]
$$

Find $\operatorname{det} A$. Find A^{-1}.

