Last Name (Print) \qquad

First Name (Print) \qquad
I understand that cheating is a serious offense.
Signature:
THE UNIVERSITY OF MANITOBA DEPARTMENT OF MATHEMATICS
MATH 1300 Vector Geometry and Linear Algebra

Mid-Term Exam
Date: Thursday, February 22, 2007
Time: 5:30-6:30 PM

Identify your section by marking an X in the box.

	Section	Instructor	Slot	Time	Room
\square	A01	E. Schippers	5	TTh 10:00-11:15am	208 Armes
	A02	N. Zorboska	8	MWF 1:30-2:20pm	204 Armes
	A03	D. Kelly	12	MWF 3:30-4:20pm	208 Armes
	A04	C. Platt	15	TTh 4:00-5:15pm	200 Armes
\square	A05	J. Sichler	E2	T 7:00-10:00pm	204 Armes
\square	Other	(challenge, deferred, etc.)			
\square					

Instructions

Fill in all the information above.

This is a one-hour exam.
No calculators, texts, notes, or other aids are permitted.
Show your work clearly for full marks.
This exam has 7 questions on 4 numbered pages, for a total of 60 points.
Check now that you have a complete exam.
Answer all questions on the exam paper in the space provided. If you need more room, you may continue your answer on the reverse side, but clearly indicate that your work is continued there. You may also use the backs of pages for scratch work, but none of it will be marked unless clearly indicated otherwise.

If a question calls for a specific method, no credit will be given for other methods.

DO NOT WRITE
IN THIS COLUMN

THE UNIVERSITY OF MANITOBA

Thursday, February 22, 2007, 5:30-6:30 PM	Mid-Term Exam
PAGE NO: 1 of 4	
COURSE: Mathematics MATH 1300 Vector Geometry and Linear Algebra	TIME: 1 HOUR
EXAMINERS: Kelly, Platt, Schippers, Sichler, Zorboska	

[Values
[9] 1. Consider the linear system:

$$
\begin{aligned}
x_{1}+2 x_{2}+5 x_{4} & =4 \\
x_{1}+2 x_{2}+2 x_{3}-x_{4} & =8
\end{aligned}
$$

(a) Find the general solution to this system using Gauss-Jordan elimination.
(b) Find a solution to the above system with $x_{2}=-2$ and $x_{4}=3$.
2. Let $A=\left[\begin{array}{cc}1 & 2 \\ -4 & 6\end{array}\right], B=\left[\begin{array}{ccc}1 & 2 & -1 \\ 2 & 1 & 0\end{array}\right]$, and $C=\left[\begin{array}{cc}-1 & 2 \\ -3 & 0 \\ 0 & 5\end{array}\right]$.

In each part below, evaluate the expression or state that it does not exist. If the expression does not exist, give a reason.
(a) $A B+C$
(b) $A C+B$
(c) $B C+A$

THE UNIVERSITY OF MANITOBA

Thursday, February 22, 2007, 5:30-6:30 PM	Mid-Term Exam
COURSE: Mathematics MATH 1300 Vector Geometry and Linear Algebra	PAGE NO: 2 of 4
	TIME: 1 HOUR

EXAMINERS: Kelly, Platt, Schippers, Sichler, Zorboska
[Values]
3. Let $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 1 \\ 2 & -1 & 0\end{array}\right]$. Find A^{-1} by the method of row reduction. Show all your work.

Write your final answer where indicated at the bottom of the page.

THE UNIVERSITY OF MANITOBA

Thursday, February 22, 2007, 5:30-6:30 PM
Mid-Term Exam
PAGE NO: 3 of 4
TIME: 1 HOUR
COURSE: Mathematics MATH 1300 Vector Geometry and Linear Algebra
[Values]
[9] 4. Express $A=\left[\begin{array}{cc}0 & 2 \\ 1 & -3\end{array}\right]$ as a product of elementary matrices. Show all your work.
[9] 5. Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 0 & 1 \\ 3 & 1 & 0\end{array}\right]$, and assume B is another 3×3 matrix with $\operatorname{det}(B)=10$.
(a) Find $\operatorname{det}(A)$ by expansion along row 2 . (No credit for any other method.)
(b) Find the determinant of $A B^{2}$.
(c) Find the determinant of $A^{-1}(2 B) A^{T}$.

THE UNIVERSITY OF MANITOBA

Thursday, February 22, 2007, 5:30-6:30 PM	Mid-Term Exam
COURSE: Mathematics MATH 1300 Vector Geometry and Linear Algebra 4 of 4	
EXAMINERS: Kelly, Platt, Schippers, Sichler, Zorboska	

[Values] 6. Use Cramer's rule to solve the following system. (No credit for any other method.)

$$
\begin{aligned}
& 2 x+5 y=6 \\
& 3 x+2 y=-7
\end{aligned}
$$

7. Assume that the augmented matrix of a certain linear system can be reduced to
$\left[\begin{array}{ccc|c}1 & 0 & -1 & -2 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & p & q\end{array}\right]$
with elementary row operations.
Determine all values of p and q (if any) for which this system
(a) has no solutions:
(b) has a unique solution:
(c) has infinitely many solutions:
(d) In case (c), determine the general solution.
