Last	Name	(Print)

First Name (Print)

I understand that cheating is a serious offense.	
Signature:	

Student Number

Room _____Seat Number_

THE UNIVERSITY OF MANITOBA DEPARTMENT OF MATHEMATICS **MATH 1300 Vector Geometry and Linear Algebra Mid-Term Exam** Date: Thursday, February 22, 2007 Time: 5:30–6:30 PM

Identify your section by marking an X in the box.

	Section	Instructor	Slot	Time	Room
	A01	E. Schippers	5	TTh 10:00–11:15am	208 Armes
	A02	N. Zorboska	8	MWF 1:30-2:20pm	204 Armes
	A03	D. Kelly	12	MWF 3:30-4:20pm	208 Armes
	A04	C. Platt	15	TTh 4:00–5:15pm	200 Armes
	A05	J. Sichler	E2	T 7:00–10:00pm	204 Armes
Other (challenge, deferred, etc.)					

DO NOT WRITE IN THIS COLUMN		
r		
1		
	/9	
2		
	/8	
3		
	/9	
4	17	
	/9	
5		
	/9	
6	17	
	/8	
7	/0	
	/8	
	70	
Total	/60	

Instructions

Fill in all the information above.

This is a one-hour exam.

No calculators, texts, notes, or other aids are permitted.

Show your work clearly for full marks.

This exam has 7 questions on 4 numbered pages, for a total of 60 points. **Check now** that you have a complete exam.

Answer all questions on the exam paper in the space provided. If you need more room, you may continue your answer on the **reverse** side, but **clearly indicate** that your work is continued there. You may also use the backs of pages for scratch work, but none of it will be marked unless clearly indicated otherwise.

If a question calls for a specific method, **no credit** will be given for other methods.

Thursday, February 22, 2007, 5:30–6:30 PM	Mid-Term Exam
	PAGE NO: 1 of 4
COURSE: Mathematics MATH 1300 Vector Geometry and Linear Algebra	TIME: 1 HOUR
EXAMINERS: Kelly, Platt, Schipper	s, Sichler, Zorboska

[Values] [9] **1.** Consider the linear system:

(a) Find the general solution to this system using Gauss-Jordan elimination.

(b) Find a solution to the above system with $x_2 = -2$ and $x_4 = 3$.

[8] **2.** Let
$$A = \begin{bmatrix} 1 & 2 \\ -4 & 6 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 0 \end{bmatrix}$, and $C = \begin{bmatrix} -1 & 2 \\ -3 & 0 \\ 0 & 5 \end{bmatrix}$.

In each part below, evaluate the expression or state that it does not exist. If the expression does not exist, give a reason.

(a) AB + C

(b) AC + B

(c) BC + A

Thursday, February 22, 2007, 5:30–6:30 PM	Mid-Term Exam
	PAGE NO: 2 of 4
COURSE: Mathematics MATH 1300 Vector Geometry and Linear Algebra	TIME: 1 HOUR
EXAMINERS: Kelly, Platt, Schipp	ers, Sichler, Zorboska

[Values] [9] **3.** Let $A = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 2 & -1 & 0 \end{bmatrix}$. Find A^{-1} by the method of row reduction. Show all your work. Write your final answer where indicated at the bottom of the page.

Answer: $A^{-1} =$

Thursday, February 22, 2007, 5:30–6:30 PM	Mid-Term Exam
	PAGE NO: 3 of 4
COURSE: Mathematics MATH 1300 Vector Geometry and Linear Algebra	TIME: 1 HOUR
EXAMINERS: Kelly, Platt, Schippe	rs, Sichler, Zorboska

[Values] [9] **4.** Express $A = \begin{bmatrix} 0 & 2 \\ 1 & -3 \end{bmatrix}$ as a product of elementary matrices. Show all your work.

[9] 5. Let $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 0 & 1 \\ 3 & 1 & 0 \end{bmatrix}$, and assume B is another 3×3 matrix with $\det(B) = 10$.

(a) Find det(A) by expansion along row 2. (*No credit* for any other method.)

(**b**) Find the determinant of AB^2 .

(c) Find the determinant of $A^{-1}(2B)A^T$.

Thursday, February 22, 2007, 5:30–6:30 PM	Mid-Term Exam
	PAGE NO: 4 of 4
COURSE: Mathematics MATH 1300 Vector Geometry and Linear Algebra	TIME: 1 HOUR
EXAMINERS: Kelly, Platt, Schippe	rs, Sichler, Zorboska

[Values] [8] **6.** Use Cramer's rule to solve the following system. (*No credit* for any other method.)

[8] 7. Assume that the augmented matrix of a certain linear system can be reduced to

1	0	-1	-2
0	1	0	-3
0	0	p	q

with elementary row operations.

Determine all values of p and q (if any) for which this system

(a) has no solutions:

(b) has a **unique** solution:

(c) has infinitely many solutions:

(d) In case (c), determine the general solution.