UNIVERSITY OF MANITOBA
 DEPARTMENT OF MATHEMATICS
 MATH 1300 Vector Geometry \& Linear Algebra
 Midterm Examination
 February 28, 2008 5:30-6:30 PM

FIRST NAME: (Print in ink)	Total	/60
	1	/9
LAST NAME: (Print in ink)	2	18
	3	/9
STUDENT NUMBER: (in ink)	4	/9
	5	/9
SIGNATURE: (in ink) \qquad (I understand that cheating is a serious offense)	6	18
	7	18
	DO NC	EE IN UMN

Please indicate your instructor and section by checking the appropriate box below:

A01	slot 5	T, Th - 10:00 am	E. Schippers
A02	slot 8	MWF - 1:30 pm	K. Kopotun
A03	slot 12	MWF - 3:30 pm	D. Kelly
A04	slot 15	T,Th - 4:00 pm	C. Platt
	slot E2	T-7:00 pm	J. Sichler

INSTRUCTIONS TO STUDENTS:

Fill in all the information above
This is a 1 hour exam.
No calculators, texts, notes, cellphones or other aids are permitted.
Show your work clearly for full marks.
This exam has 7 questions on 4 numbered pages, for a total of 60 points. There is also 1 blank page for rough work. You may remove the blank page if you want, but do not remove the staple. Check now that you have a complete exam.

Answer all questions on the exam paper in the space provided. If you need more room, you may continue your work on the reverse side of the page, but clearly indicate that your work is continued there.

If a question calls for a specific method, no credit will be given for other methods.

UNIVERSITY OF MANITOBA

DATE: February 28, 2008
MIDTERM

DEPARTMENT \& COURSE NO: MATH 1300
TIME: 1 hour
EXAMINATION: Vector Geometry \& Linear Algebra
[9] 1. Consider the linear system:

$$
\begin{aligned}
& x_{1}+3 x_{2}+6 x_{4}=4 \\
& x_{1}+3 x_{2}+4 x_{3}-2 x_{4}=8
\end{aligned}
$$

(a) Find the general solution to this system using Gauss-Jordan elimination.
(b) Find a solution to the above system with $x_{2}=-2$ and $x_{4}=3$.
[8] 2. Let $A=\left[\begin{array}{rr}3 & 2 \\ -4 & 8\end{array}\right], B=\left[\begin{array}{rrr}3 & 2 & -1 \\ 2 & 1 & 1\end{array}\right], C=\left[\begin{array}{rr}3 & 2 \\ -2 & 0 \\ 0 & 4\end{array}\right]$.
In each part below, evaluate the expression or state that it does not exist. If the expression does not exist, give a reason.
(a) $A B+C$
(b) $A C+B$
(c) $B C+A$

UNIVERSITY OF MANITOBA

DATE: February 28, 2008
MIDTERM
[9] 3. Let $A=\left[\begin{array}{rrr}2 & 1 & 1 \\ 1 & 0 & 1 \\ 2 & -1 & 0\end{array}\right]$. Find A^{-1} by the method of row reduction. Show all your work. Write your final answer where indicated at the bottom of the page. (No Credit for any other method.)

Answer: $A^{-1}=[\square$

UNIVERSITY OF MANITOBA

DATE: February 28, 2008
MIDTERM
[9] 4. Express $A=\left[\begin{array}{ll}0 & 3 \\ 1 & 5\end{array}\right]$ as a product of elementary matrices. Show all your work.
[9] 5. Let $A=\left[\begin{array}{rrr}1 & 2 & 2 \\ 0 & 2 & 1 \\ -4 & 1 & 2\end{array}\right]$, and assume B is another 3×3 matrix $\operatorname{with} \operatorname{det}(B)=5$.
(a) Find $\operatorname{det}(A)$, by expansion along row 2. (No Credit for any other method.)
(b) Find the determinant of $B A B^{T}$.
(c) Find the determinant of $(2 B) A^{-1}$.

UNIVERSITY OF MANITOBA

DATE: February 28, 2008
MIDTERM

DEPARTMENT \& COURSE NO: MATH 1300
TIME: 1 hour
EXAMINATION: Vector Geometry \& Linear Algebra
[8] 6. Use Cramer's rule to solve the following system. (No Credit for any other method)

$$
\begin{array}{r}
4 x-2 y=4 \\
3 x+y=3
\end{array}
$$

[8] 7. Assume that the augmented matrix of a certain linear system can be reduced to
$\left[\begin{array}{lll|l}1 & 0 & 3 & 4 \\ 0 & 1 & 2 & 5 \\ 0 & 0 & a & b\end{array}\right]$
with elementary row operations.
Determine all values of a and b (if any) for which this system
(a) has no solutions:
(b) has a unique solution:
(c) has infinitely many solutions:
(d) In case (c), determine the general solution.

