UNIVERSITY OF MANITOBA

DATE: October 26, 2009

COURSE: MATH 1300
EXAMINATION: Vector Geometry and Linear Algebra
[2] 1. (a) Define what is meant by a "linear equation in variables x_{1}, \ldots, x_{n} ".
Solution: A linear linear equation in variables x_{1}, \ldots, x_{n} is an equation of the form $a_{1} x_{1}+\cdots+a_{n} x_{n}=b$, where a_{1}, \ldots, a_{n}, b are real numbers.
[2] (b) Define what it means for an $n \times n$ matrix A to be invertible.
Solution: An $n \times n$ matrix A is invertible if and only if there exists an $n \times n$ matrix B so that $A B=I_{n}=B A$.
[2] (c) What is a system of linear equations of the form $A \mathbf{x}=\mathbf{0}$ called?
Solution: Such a system is called a homogeneous system
(d) Define what is meant by " A is symmetric". (Be brief!)

Solution: A matrix A is symmetric if and only if $A=A^{T}$
(e) Give an example of an inconsistent system of linear equations.

Solution:

one example is: $\begin{aligned} x \quad+y & =0 \\ 2 x+2 y & =2\end{aligned}$
There are other examples.
[2] 2. For a system of equations of the form $A \mathbf{x}=\mathbf{0}$, is it
$\sqrt{ }$ always consistent,
\square sometimes consistent,
\square or inconsistent?
Check the appropriate box and explain.

Solution: A system $A \mathbf{x}=\mathbf{0}$ always has the trivial solution of $\mathbf{x}=\mathbf{0}$, so such a system is always consistent.
[4] 3. Let A be an $n \times n$ matrix. State four additional properties equivalent to " A is invertible".

Solution: (See Theorem 1.5.3, 1.6.4, 2.3.3, or 2.3.6)

- $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
- The RREF of A is I_{n}.
- A is expressible as a product of elementary matrices.
- For every $n \times 1$ matrix $\mathbf{b}, A \mathbf{x}=\mathbf{b}$ is consistent.
- For every $n \times 1$ matrix $\mathbf{b}, A \mathbf{x}=\mathbf{b}$ has a unique solution.
- $\operatorname{det}(A) \neq 0$.

UNIVERSITY OF MANITOBA

COURSE: MATH 1300
EXAMINATION: Vector Geometry and Linear Algebra
TIME: 60 minutes EXAMINER: Various
[3] 4. Prove that if a matrix A has an inverse, then this inverse is unique. Give reasons for each step.

Solution: Let A be $n \times n$ be invertible with two possible inverses, say B and C. Because each is an inverse then (a) $A B=I_{n}$, (b) $B A=I_{n}$, (c) $A C=I_{n}$ (d) $C A=I_{n}$. Then

$$
B=B I_{n}=B(A C)=(B A) C=I_{n} C=C
$$

where the reasons for the successive equalities are: I_{n} is the multiplicative identity, (c), associativity of multiplication, (b), and again using the identity.
[2] 5. What is the maximum number of 0 's in an invertible 5×5 matrix? Explain.

Solution: 20 is the maximum. This maximum is attained by the invertible matrix I_{5}. If there are more than 20 zeros, some row (or column) must contain all zeros, in which case the matrix is not invertible (since it will have a determinant of zero).
[7] 6. (a) By Gauss-Jordan elimination, solve the (consistent) system

$$
\begin{aligned}
x+2 y & -z=3 \\
4 x+10 y+2 z & =10 \\
x+3 y & +2 z=2
\end{aligned}
$$

If row operations are not clearly and properly identified, your answers will not be graded. If there is more than one solution, state the solution using parameter(s).

Solution:

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & 2 & -1 & 3 \\
4 & 10 & 2 & 10 \\
1 & 3 & 2 & 2
\end{array}\right) \Longrightarrow \begin{array}{lll}
R_{2} & \rightarrow & R_{2}-4 R_{1} \\
R_{3} & \rightarrow & R_{3}-R_{1}
\end{array} \\
& \left(\begin{array}{ccc|c}
1 & 2 & -1 & 3 \\
0 & 2 & 6 & -2 \\
0 & 1 & 3 & -1
\end{array}\right) \\
& \left(\begin{array}{ccc|c}
1 & 2 & -1 & 3 \\
0 & 1 & 3 & -1 \\
0 & 1 & 3 & -1
\end{array}\right)
\end{aligned} \begin{aligned}
& R_{2} \rightarrow \begin{array}{l}
\frac{1}{2} R_{2} \\
R_{1}
\end{array} \rightarrow R_{1}-2 R_{2} \\
& R_{3}
\end{aligned} \rightarrow R_{3}-R_{1} .
$$

[1] (b) Find a particular solution and verify that it is indeed a solution.

UNIVERSITY OF MANITOBA

DATE: October 26, 2009
COURSE: MATH 1300
TIME: 60 minutes
EXAMINATION: Vector Geometry and Linear Algebra

Solution: If we let $t=0$ we get the solution $x=5, y=-1, z=0$. (There are others.) This is verified by

$$
\begin{aligned}
(5)+2(-1) & -(0)=3 \\
4(5)+10(-1) & +2(0)=10 \\
(5)+3(-1)+2(0)= & 2
\end{aligned}
$$

[8] 7. Let $A=\left[\begin{array}{rrr}4 & 0 & -1 \\ 1 & 3 & 0\end{array}\right], \quad B=\left[\begin{array}{rr}4 & -3 \\ 0 & 1\end{array}\right], \quad$ and $C=\left[\begin{array}{rr}3 & -2 \\ 0 & 0 \\ -1 & 7\end{array}\right]$.
Calculate each of the following, and if the expression is not defined, say why.
[2] (a) The size of $A^{T} C^{T}=\underline{3 \times 3}$
[2] (b) $A C$.

Solution: $A C=\left[\begin{array}{rr}13 & -15 \\ 3 & -2\end{array}\right]$
[2] (c) B^{-1} (by any method).

Solution: $B^{-1}=\frac{1}{(4)(1)-(-3)(0)}\left[\begin{array}{ll}1 & 3 \\ 0 & 4\end{array}\right]=\left[\begin{array}{cc}\frac{1}{4} & \frac{3}{4} \\ 0 & 1\end{array}\right]$
[2] (d) $A^{T} C$.

Solution: This is undefined. Since A is a 2×3 matrix, A^{T} is a 3×2 matrix; C is also a 3×2 matrix. The product is undefined because the number of columns of A^{T} is not the same as the number of rows of C.
[2] 8. For what values of a and b is the matrix $M=\left[\begin{array}{ll}1 & a \\ a & b\end{array}\right]$ an elementary matrix?
Solution: $a=0, b \neq 0$.
9. Calculate the following determinants by any method; only answers are graded:
[1] (a) $\left|\begin{array}{rr}1 & -5 \\ 7 & 6\end{array}\right|=\underline{41}$.
[2] (b) $\left|\begin{array}{llll}0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right|=\underline{-1}$.
[3] (c) $\left|\begin{array}{rrrr}1 & 6 & 1 & 0 \\ 3 & -6 & -2 & -3 \\ 1 & 0 & 0 & -1\end{array}\right|=\underline{18}$.

UNIVERSITY OF MANITOBA

DATE: October 26, 2009
COURSE: MATH 1300
TIME: 60 minutes
EXAMINATION: Vector Geometry and Linear Algebra
[7] 10. Suppose that A is a 5×5 matrix and $\operatorname{det}(A)=-2$. Find (only answers are graded):
[2] (a) $\operatorname{det}\left(A^{-1}\right)=\underline{-\frac{1}{2}}$;
[1] (b) $\operatorname{det}\left(A^{4}\right)=\underline{16}$;
[2] (c) $\operatorname{det}(3 A)=3^{5}(-2)=-486$;
$[2](\mathrm{d}) \operatorname{det}(\operatorname{adj}(A))=\underline{16}$.
[7] 11. Let $H=\left[\begin{array}{rrr}1 & 4 & 3 \\ -1 & -2 & 0 \\ 2 & 2 & 3\end{array}\right]$. Given that $\operatorname{det}(H)=12$, compute
[3] (a) $\operatorname{cof}(H)$, the cofactor matrix for H,

Solution: $\operatorname{cof}(H)=\left[\begin{array}{rrr}-6 & 3 & 2 \\ -6 & -3 & 6 \\ 6 & -3 & 2\end{array}\right]$
[2] (b) $\operatorname{adj}(H)$, the adjoint of H, and

Solution: $\operatorname{adj}(H)=\left[\begin{array}{rrr}-6 & -6 & 6 \\ 3 & -3 & -3 \\ 2 & 6 & 2\end{array}\right]$
[2] (c) H^{-1} (using the adjoint).

Solution: $H^{-1}=\frac{1}{12}\left[\begin{array}{rrr}-6 & -6 & 6 \\ 3 & -3 & -3 \\ 2 & 6 & 2\end{array}\right]=\left[\begin{array}{rrr}-\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} \\ \frac{1}{6} & \frac{1}{2} & \frac{1}{6}\end{array}\right]$

