Mathematics MATH1300
 Vectors Geometry and Linear Algebra
 Midterm Examination
 October 20, 2008, 5:30-6:30pm

1. (20%)
(a) Solve by Gauss-Jordan Elimination:

$$
\begin{aligned}
& 2 x-4 y-6 z=2 \\
& 3 x+5 y+2 z=-8
\end{aligned}
$$

Answer: Take $\left[\begin{array}{cccc}2 & -4 & -6 & 2 \\ 3 & 5 & 2 & -8\end{array}\right]$,

- multiply row 1 by $\frac{1}{2}\left(R_{1} \leftarrow \frac{1}{2} R_{1}\right)$ to get

$$
\left[\begin{array}{cccc}
1 & -2 & -3 & 1 \\
3 & 5 & 2 & -8
\end{array}\right]
$$

- Subtract three times row 1 from row $2\left(R_{2} \leftarrow R_{2}-3 R_{1}\right)$ to get $\left[\begin{array}{cccc}1 & -2 & -3 & 1 \\ 0 & 11 & 11 & -11\end{array}\right]$
- Multiply row 2 by $\frac{1}{11}\left(R_{2} \leftarrow \frac{1}{11} R_{2}\right)$ to get

$$
\left[\begin{array}{cccc}
1 & -2 & -3 & 1 \\
0 & 1 & 1 & -1
\end{array}\right]
$$

- Add twice row 2 to row $1\left(R_{1} \leftarrow R_{1}+2 R_{2}\right)$ to get

$$
\left[\begin{array}{cccc}
1 & 0 & -1 & -1 \\
0 & 1 & 1 & -1
\end{array}\right]
$$

Hence z is a free variable, say $z=t$. It then follows that $x=-1+t$ and $y=-1-t$.
(b) Solve the following system of linear equations using Cramer's rule:

$$
\begin{array}{r}
4 x_{1}-11 x_{2}=5 \\
2 x_{1}-5 x_{2}=2
\end{array}
$$

$$
\begin{aligned}
& \text { Answer: } \operatorname{det}\left[\begin{array}{cc}
4 & -11 \\
2 & -5
\end{array}\right]=2 \text {, } \operatorname{det}\left[\begin{array}{cc}
5 & -11 \\
2 & -5
\end{array}\right]=-3 \text { and } \\
& \operatorname{det}\left[\begin{array}{ll}
4 & 5 \\
2 & 2
\end{array}\right]=-2 . \text { Hence } x_{1}=-\frac{3}{2} \text { and } x_{2}=-1 .
\end{aligned}
$$

2. (15%) Let $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ -1 & -2 & -3\end{array}\right], B=\left[\begin{array}{cc}1 & 2 \\ 0 & -1\end{array}\right]$ and $C=\left[\begin{array}{ccc}-2 & 0 & 1 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3}\end{array}\right]$. If the given expression is defined, calculate the resulting matrix or value. Otherwise, give a reason why it does not exist.
(a) $A B$

Answer: undefined since the matrices have the wrong shape
(b) $C A^{T}$

Answer: $\left[\begin{array}{ccc}-2 & 0 & 1 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3}\end{array}\right]\left[\begin{array}{ll}1 & -1 \\ 2 & -2 \\ 3 & -3\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ 1 & -1 \\ 1 & -1\end{array}\right]$
(c) $B(A+C)$

Answer: undefined since $A+C$ undefined
3. (15%) Let $B=\left[\begin{array}{cc}1 & 4 \\ -2 & 5\end{array}\right]$.
(a) Suppose A satisfies the equation $2 A^{T}+I=B$. Find A.

Answer: $2 A^{T}=\left[\begin{array}{cc}0 & 4 \\ -2 & 4\end{array}\right], A^{T}=\left[\begin{array}{cc}0 & 2 \\ -1 & 2\end{array}\right]$ and
$A=\left[\begin{array}{cc}0 & -1 \\ 2 & 2\end{array}\right]$
(b) Find B^{-1}

Answer: $\quad B^{-1}=\frac{1}{13}\left[\begin{array}{cc}5 & -4 \\ 2 & 1\end{array}\right]$
(c) Find $\operatorname{adj}(B)$.

Answer: $\operatorname{adj}(B)=\left[\begin{array}{cc}5 & -4 \\ 2 & 1\end{array}\right]$
4. (20%) Let $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & 2 & 2 \\ 0 & 0 & -1\end{array}\right]$.
(a) Find A^{-1}

Answer: $\quad A^{-1}=\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & \frac{1}{2} & 1 \\ 0 & 0 & -1\end{array}\right]$.
(b) Consider the elementary row operation where row 2 is replaced by row 2 minus twice row 1 (sometimes written $R_{2} \leftarrow R_{2}-2 R_{1}$). Let C be the matrix we get after applying this operation to A Find the elementary matrix E such that $C=E A$
Answer: $\quad E=\left[\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.
(c) The determinant of A is -2 . Find the determinant of $B=3 A^{T} A^{3}$ using the properties of determinants (don't multiply the matrices to find B; you may leave your answer as a product of integers). Answer: $\operatorname{det}(B)=\operatorname{det}\left(3 A^{T} A^{3}\right)=\operatorname{det}\left(3 A^{T}\right) \operatorname{det}\left(A^{3}\right)=$ $3^{3} \operatorname{det}\left(A^{T}\right) \operatorname{det}(A)^{3}=3^{3} \cdot(-2)^{4}=27 \cdot 16$.
5. (15%)
(a) Find the determinant of the matrix

$$
A=\left[\begin{array}{cccc}
1 & 0 & 1 & -1 \\
-2 & 0 & 1 & 0 \\
2 & 3 & 1 & 1 \\
1 & 0 & 2 & 1
\end{array}\right]
$$

Answer: Expanding on the third column gives

$$
\operatorname{det}(A)=-3 \operatorname{det}\left(\left[\begin{array}{ccc}
1 & 1 & -1 \\
-2 & 1 & 0 \\
1 & 2 & 1
\end{array}\right]\right)=(-3) \cdot 8=-24
$$

(b) Given that det $\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=7$, find

$$
\operatorname{det}\left[\begin{array}{ccc}
a+2 d & b+2 e & c+2 f \\
3 g & 3 h & 3 i \\
d & e & f
\end{array}\right]
$$

Answer: Adding a multiple of one row to another leaves the determinant unchanged. Hence

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{ccc}
a+2 d & b+2 e & c+2 f \\
3 g & 3 h & 3 i \\
d & e & f
\end{array}\right] & =\operatorname{det}\left[\begin{array}{ccc}
a & b & c \\
3 g & 3 h & 3 i \\
d & e & f
\end{array}\right] \\
& =3 \operatorname{det}\left[\begin{array}{lll}
a & b & c \\
g & h & i \\
d & e & f
\end{array}\right] \\
& =-3 \operatorname{det}\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \\
& =-21 .
\end{aligned}
$$

6. (15%) Suppose that the augmented matrix of a system of linear equations has been partially reduced using elementary row operations to

$$
\left[\begin{array}{ccc|c}
1 & 2 & a+2 & b \\
0 & 1 & b-1 & a \\
0 & 0 & a & b \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Find all values(if any) of a and b for which the system is inconsistent.
Answer: For an inconsistent system, we must have a row with all but the last entry zero and the last entry nonzero, that is, $a=0$ and $b \neq 0$
(b) Find all values (if any) of a and b for which the system has exactly one solution.
Answer: If $a \neq 0$, Gaussian elimination guarantees a unique solution.
(c) Find all values (if any) of a and b for which the system has infinitely many solutions.
Answer: To get a free variable, we must have $a=b=0$.

