Surname (Print) \qquad

Given Name(s) (Print)

I understand that cheating is a serious offense.
Signature:(in ink)

Student Number \qquad

Room \qquad Seat Number \qquad

THE UNIVERSITY OF MANITOBA DEPARTMENT OF MATHEMATICS MATH 1300 Vector Geometry and Linear Algebra Mid-Term Exam (Deferred)

Date: Tuesday, March 9, 2010
Time: 5:30-6:30 PM

Identify your section by marking an X in the box.

Section	Instructor	Slot	Time	Room
A01	C. Platt	3	10:30-11:20 am	221 Wallace
A02	N. Zorboska	5	TTh 10:00-11:15am	208 Armes
A03	C. Sun	8	MWF 1:30-2:20pm	204 Armes
A04	D. Kalajdzievska	12	MWF 3:30-4:20 pm	208 Armes
A05	M. Doob	15	TTh 4:00-5:15pm	200 Armes
Other	challenge, deferred	etc.)		

Instructions

Fill in all the information above.
This is a one-hour exam.

No calculators, texts, notes, or other aids are permitted
Show your work clearly for full marks.
This exam has 8 questions on 4 numbered pages, for a total of 60 points.
Check now that you have a complete exam.
Answer all questions on the exam paper in the space provided. If you need more room, you may continue your answer on the reverse side, but clearly indicate that your work is continued there. You may also use the backs of pages for scratch work, but none of it will be marked unless clearly indicated otherwise.

If a question calls for a specific method, no credit will be given for other methods.

DO NOT WRITE
IN THIS COLUMN

7

THE UNIVERSITY OF MANITOBA

1. Use Gaussian elimination to convert the following augmented matrix to row-echelon form, and then find all solutions to the system that it represents:

$$
[A \mid \mathbf{b}]=\left[\begin{array}{rrrr|r}
-1 & -1 & -8 & 0 & 5 \\
0 & 6 & -12 & 24 & -6 \\
1 & 3 & 6 & 1 & -3
\end{array}\right]
$$

2. Suppose that the augmented matrix of a system $A \mathbf{x}=\mathbf{b}$ has been row-reduced to

$$
\left[\begin{array}{cc|c}
1 & 0 & -2+2 b \\
0 & 2 a+5 & b
\end{array}\right] .
$$

(a) Find all a and b such that system has no solutions.
(b) Find all a and b such that system has infinitely many solutions.
(c) Find all a and b such that system has exactly one solution. Write the solution for every such a and b.

THE UNIVERSITY OF MANITOBA

[Values]
3. $A=\left[\begin{array}{cc}2 & 3 \\ 1 & -2 \\ 7 & 0\end{array}\right], B=\left[\begin{array}{ccc}0 & 1 & 2 \\ 1 & 0 & -3\end{array}\right], C=\left[\begin{array}{ccc}1 & -1 & 2 \\ -1 & 0 & 1 \\ 3 & 1 & 5\end{array}\right], D=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right], E=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$.

Given the above, state whether each of the following expressions is well defined, and if so, find the resulting value. If it is not defined, state why.
(a) $D B^{T}-E$
(b) $B+\frac{2}{3} D^{2}$
(c) $2 C A+B$
(d) The third column (only) of $B C$
(e) The $(3,1)$ entry of $B A$
[7] 4. Suppose A is a 4×4 invertible matrix.
(a) What is the reduced row echelon form of $4 A$?
(b) For any 4×1 matrix \mathbf{b}, determine the number of solutions of the system $A \mathbf{x}=\mathbf{b}$.
(c) Find $\operatorname{det}(A)$, given that $\operatorname{det}\left(A^{2}\right)+2 \operatorname{det}(A)=0$. Justify your answer.

THE UNIVERSITY OF MANITOBA

5. State whether each statement is "TRUE" or "FALSE". If it is "FALSE", state a modified version that is true.
(a) For any a, b, and $c,\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right]^{-1}$ exists and is equal to $\left[\begin{array}{ccc}1 / a & 0 & 0 \\ 0 & 1 / b & 0 \\ 0 & 0 & 1 / c\end{array}\right]$.
(b) If A and B are invertible $n \times n$ matrices, then $(A B)^{-1}=A^{-1} B^{-1}$.
(c) For matrices A, B, and C, if $A B=0$, then either $A=0$ or $B=0$.
(d) The product of any two lower triangular matrices is upper triangular.
[8] 6. Supppose A and B are 5×5 matrices with $\operatorname{det}(A)=\frac{1}{2}$ and $\operatorname{det}(B)=-3$. Compute each of the following:
(a) $\operatorname{det}(2 A B)$
(b) $\operatorname{det}\left(\left(A B^{T}\right)^{T}\right)$
(c) $\operatorname{det}\left(B A B^{-1}\right)$
(d) $B \operatorname{adj}(B)$

THE UNIVERSITY OF MANITOBA

7. Calculate the following determinants (by any method, answers only will be marked).
(а) $\left|\begin{array}{cccc}2 & 3 & 0 & 1 \\ 1 & 2 & -1 & 1 \\ 0 & 3 & 0 & 4 \\ 0 & 5 & 0 & 2\end{array}\right|$
(b) $\left|\begin{array}{cccc}5 & a & 5 a & 7 \\ 3 & 0 & 3 a & 19 \\ -12 & 14 & -12 a & 1 \\ 0 & 33 & 0 & 11 a\end{array}\right|$, where a is any number.
(c) $\left|\begin{array}{cccccc}-43 & 0 & 0 & 0 & 0 & 0 \\ 20 & 2 & 0 & 0 & 0 & 0 \\ 19 & 13 & -1 & 0 & 0 & 0 \\ 21 & 41 & 0 & 10 & 0 & 0 \\ 7 & 41 & 1 & 5 & 1 & 0 \\ 1 & -1 & 1 & -1 & 1 & -1\end{array}\right|$
8. Let $A=\left[\begin{array}{ccc}2 & -3 & 3 \\ 1 & 5 & 3 \\ 0 & 0 & 1\end{array}\right]$. $\operatorname{Then} \operatorname{det}(A)=13$. (Given, no calculation required).
(a) The cofactor matrix of A is partially given as $\operatorname{cof}(A)=\left[\begin{array}{ccc}5 & -1 & 0 \\ a & b & 0 \\ -24 & -3 & 13\end{array}\right]$. Find a and b.
(b) Find the adjoint of A.
(c) Find A^{-1} by the adjoint method (no credit for other methods).
