UNIVERSITY OF MANITOBA
 DEPARTMENT OF MATHEMATICS
 MATH 1300 Vector Geometry \& Linear Algebra
 FINAL EXAMINATION
 Thursday, April 1720086 pm

FIRST NAME: (Print in ink) \qquad

LAST NAME: (Print in ink) \qquad

STUDENT NUMBER: (in ink) \qquad

SIGNATURE: (in ink)
(I understand that cheating is a serious offense)

Please indicate your instructor and section by checking the appropriate box below:

A01 slot 5	T, Th - 10:00 am	E. Schippers	Question	Points	Score
			1	10	
A02 slot 8	MWF - 1:30 pm	K. Kopotun	2	16	
			3	12	
A03 slot 12	MWF - 3:30 pm	D. Kelly	4	12	
			5	12	
A04 slot 15	T,Th - 4:00 pm	C. Platt	6	12	
			7	12	
A05 slot E2	T-7:00 pm	J. Sichler	8	9	
			9	15	
challenge/deferred			10	10	
			Total:	120	

INSTRUCTIONS TO STUDENTS:

Fill in all the information above
This is a 2 hours exam.
No calculators, texts, notes, cellphones or other aids are permitted.
Show your work clearly for full marks.
This exam has 10 questions on 10 numbered pages, for a total of 120 points. There are also 2 blank pages for rough work. You may remove the blank page if you want, but do not remove the staple. Check now that you have a complete exam.

Answer all questions on the exam paper in the space provided. If you need more room, you may continue your work on the reverse side of the page, but clearly indicate that your work is continued there.

If a question calls for a specific method, no credit will be given for other methods.

UNIVERSITY OF MANITOBA

DATE: Thursday, April 172008
FINAL EXAMINATION
PAPER \# 329
DEPARTMENT \& COURSE NO: MATH 1300
EXAMINATION: Vector Geometry \& Linear Algebra
[10] 1. Given the following system of equations:

$$
\left\{\begin{aligned}
x+y+3 z & =5 \\
y+z & =a \\
b y+z & =2
\end{aligned}\right.
$$

(a) For what values of a and b does the system of equations have no solution?
(b) For what values of a and b does the system of equations have exactly one solution?
(c) For what values of a and b does the system of equations have infinitely many solutions?
[16] 2. Let

$$
A=\left[\begin{array}{cccc}
1 & 0 & -1 & 2 \\
0 & 0 & 1 & 0 \\
-1 & 1 & 0 & 2 \\
3 & 0 & -2 & -3
\end{array}\right]
$$

(a) Evaluate the missing 2,3 entry x in the adjoint of A below:

$$
\operatorname{adj}(A)=\left[\begin{array}{cccc}
3 & 7 & 0 & 2 \\
-3 & 5 & x & 4 \\
0 & 9 & 0 & 0 \\
3 & 1 & 0 & -1
\end{array}\right]
$$

(b) The determinant of A is 9 . Find A^{-1} by using Part (a).
(c) Let $A \mathbf{x}=\mathbf{b}$ where

$$
\mathbf{b}=\left(\begin{array}{c}
1 \\
2 \\
-1 \\
4
\end{array}\right) \quad \text { and } \quad \mathbf{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)
$$

Use A^{-1} from part (b) to find \mathbf{x}. No credit will be given for any other method.

UNIVERSITY OF MANITOBA

DATE: Thursday, April 172008
FINAL EXAMINATION
PAPER \# 329
DEPARTMENT \& COURSE NO: MATH 1300
PAGE: 3 of 10
EXAMINATION: Vector Geometry \& Linear Algebra
[12] 3. State clearly whether each of the following statements is true or false. No explanation is necessary.
(a) $\operatorname{det}\left((2 A)^{-1}\left(A^{T}\right)\left(2 A^{T}\right)\right)=\operatorname{det}(A)$ for all square matrices A.
(b) If $\operatorname{det}\left(A B^{-1}\right)=\operatorname{det}\left(A^{-1} B\right)$, then $A=B$.
(c) The product of elementary matrices is always invertible.
(d) Let $A=\left(a_{i j}\right)$ be the 2008×2008 matrix such that

$$
a_{i j}= \begin{cases}1, & \text { if } i \leq j, \\ 0, & \text { if } i>j\end{cases}
$$

Then A is invertible.
(e) Let A be an $n \times n$ matrix. If A is invertible, then $A \mathbf{x}=\mathbf{b}$ has infinitely many solutions.
(f) The following augmented matrix is in reduced row echelon form.

$$
\left(\begin{array}{ccccc|c}
1 & 2 & 3 & 0 & -2 & 0 \\
0 & 0 & 1 & 0 & 3 & 2 \\
0 & 0 & 0 & 1 & -4 & 1
\end{array}\right)
$$

UNIVERSITY OF MANITOBA

DATE: Thursday, April 172008
PAPER \# 329
PAGE: 4 of 10
DEPARTMENT \& COURSE NO: MATH 1300
TIME: 2 hours
EXAMINATION: Vector Geometry \& Linear Algebra
[12] 4. Let $\mathbf{u}=(2,-1,3), \mathbf{v}=(2,3,-1), \mathbf{w}=(4,2,-2)$.
(a) Find the cosine of the angle θ between \mathbf{u} and \mathbf{v}.
(b) Find the area of the triangle with vertices $(0,0,0),(2,3,-1)$ and $(4,2,-2)$.
(c) Find the volume of the parallelepiped with sides \mathbf{u}, \mathbf{v} and \mathbf{w}.

UNIVERSITY OF MANITOBA

DATE: Thursday, April 172008
FINAL EXAMINATION
PAPER \# 329
DEPARTMENT \& COURSE NO: MATH 1300
PAGE: 5 of 10
EXAMINATION: Vector Geometry \& Linear Algebra
[12] 5. Let l be the line $x=-2+2 t, y=1-2 t, z=-3+t$.
(a) Find an equation of the plane W perpendicular to l through the point $(-1,-4,3)$.
(b) Find the point of intersection of l and W.
(c) Show that the plane $5 x+3 y-4 z+11=0$ is perpendicular to W.

UNIVERSITY OF MANITOBA

DATE: Thursday, April 172008
FINAL EXAMINATION
PAPER \# 329
DEPARTMENT \& COURSE NO: MATH 1300
EXAMINATION: Vector Geometry \& Linear Algebra
PAGE: 6 of 10
TIME: 2 hours
EXAMINER: various
[12] 6. Let $\mathbf{u}=(2,-1,2,3), \mathbf{v}=(4,1,-1,3)$.
(a) Find a unit vector in the direction of \mathbf{v}.
(b) Find all values of k such that $\|k \mathbf{u}-k \mathbf{v}\|=3$.
(c) For what values of s and t is $\mathbf{w}=(1,2, s, t)$ orthogonal to both \mathbf{u} and \mathbf{v} ?

UNIVERSITY OF MANITOBA

DATE: Thursday, April 172008
PAPER \# 329
DEPARTMENT \& COURSE NO: MATH 1300
EXAMINATION: Vector Geometry \& Linear Algebra
[12] 7. The matrix

$$
A=\left[\begin{array}{lllllll}
1 & 2 & 0 & 4 & 0 & 0 & 0 \\
1 & 2 & 1 & 8 & 1 & 6 & 7 \\
0 & 0 & 1 & 4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 6 & 7
\end{array}\right]
$$

has reduced row echelon form

$$
R=\left[\begin{array}{lllllll}
1 & 2 & 0 & 4 & 0 & 0 & 0 \\
0 & 0 & 1 & 4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 6 & 7 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) The dimension of the null space of A is \qquad .
(b) Find a basis of the null space of A.
(c) The dimension of the row space of A is \qquad .
(d) Find a basis of the row space of A.
(e) The dimension of the column space of A is \qquad .
(f) Find a basis of the column space of A.

UNIVERSITY OF MANITOBA

DATE: Thursday, April 172008
FINAL EXAMINATION
PAPER \# 329
DEPARTMENT \& COURSE NO: MATH 1300
PAGE: 8 of 10
EXAMINATION: Vector Geometry \& Linear Algebra
TIME: 2 hours
EXAMINER: various
[9] 8. Suppose that \mathbf{a} and \mathbf{b} are orthogonal vectors in \mathbb{R}^{3} with unit length.
(a) Give a reason why $\{\mathbf{a}, \mathbf{b}\}$ is not a basis of \mathbb{R}^{3}.
(b) Give a reason why $\{\mathbf{a}, \mathbf{b}, \mathbf{a}+\mathbf{b}, \mathbf{a}-\mathbf{b}\}$ is not a basis of \mathbb{R}^{3}.
(c) Give a reason why $\{\mathbf{a}, \mathbf{b}, 2 \mathbf{a}-3 \mathbf{b}\}$ is not a basis of \mathbb{R}^{3}.

UNIVERSITY OF MANITOBA

DATE: Thursday, April 172008
FINAL EXAMINATION
PAPER \# 329
DEPARTMENT \& COURSE NO: MATH 1300
EXAMINATION: Vector Geometry \& Linear Algebra
PAGE: 9 of 10
[15] 9. For the vector spaces V and W given below, state whether W is a subspace of V. Justify your answer.
(a) $V=M_{2 \times 2}$, the set of 2×2 matrices, and W consists of all 2×2 invertible matrices.
(b) $V=M_{2 \times 2}$, and W consists of all 2×2 matrices with at least one zero row.
(c) $V=\mathbb{R}^{3}$ and W consists of all vectors in \mathbb{R}^{3} of the form $(a, b, a-b)$.

UNIVERSITY OF MANITOBA

DATE: Thursday, April 172008
FINAL EXAMINATION
PAPER \# 329
PAGE: 10 of 10
DEPARTMENT \& COURSE NO: MATH 1300
TIME: 2 hours
EXAMINATION: Vector Geometry \& Linear Algebra
EXAMINER: various
[10]10. Let $\mathbf{u}_{1}=(1,2,0,3), \mathbf{u}_{2}=(0,1,2,1), \mathbf{v}_{1}=(1,3,2,4)$ and $\mathbf{v}_{2}=(1,0,0,2)$. Let $V=\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$.
(a) Is \mathbf{v}_{1} in V ? Justify your answer.
(b) Is \mathbf{v}_{2} in V ? Justify your answer.
(c) What is the dimension of V ? Find a basis for V and justify your answer.

