UNIVERSITY OF MANITOBA DEPARTMENT OF MATHEMATICS MATH 1300 Vector Geometry & Linear Algebra FINAL EXAMINATION Thursday, April 17 2008 6 pm

FIRST NAME: (Print in ink) _____

LAST NAME: (Print in ink) _____

STUDENT NUMBER: (in ink) _____

SIGNATURE: (in ink) ______(I understand that cheating is a serious offense)

Please indicate your instructor and section by checking the appropriate box below:

	_		_ ~ ~	Question	Points	Score
A01	slot 5	T, Th - 10:00 am	E. Schippers	1	10	
100	1		TZ TZ	2	16	
A02	slot 8	MWF - 1:30 pm	K. Kopotun	3	12	
A03	slot 12	MWF - 3:30 pm	D. Kelly	4	12	
				5	12	
A04	slot 15	T,Th - 4:00 pm	C. Platt	6	12	
				7	12	
A05	slot E2	T - 7:00 pm	J. Sichler	8	9	
				9	15	
		challenge/deferred		10	10	
		0 /		Total:	120	

INSTRUCTIONS TO STUDENTS:

Fill in all the information above

This is a 2 hours exam.

No calculators, texts, notes, cellphones or other aids are permitted.

Show your work clearly for full marks.

This exam has 10 questions on 10 numbered pages, for a total of 120 points. There are also 2 blank pages for rough work. You may remove the blank page if you want, but do not remove the staple. **Check now** that you have a complete exam.

Answer all questions on the exam paper in the space provided. If you need more room, you may continue your work on the **reverse** side of the page, but **clearly indicate** that your work is continued there.

If a question calls for a specific method, no credit will be given for other methods.

DATE: Thursday, April 17 2008 PAPER # 329 DEPARTMENT & COURSE NO: MATH 1300 EXAMINATION: Vector Geometry & Linear Algebra FINAL EXAMINATION PAGE: 1 of 10 TIME: <u>2 hours</u> EXAMINER: <u>various</u>

[10] **1.** Given the following system of equations:

$$\begin{cases} x + y + 3z = 5\\ y + z = a\\ by + z = 2 \end{cases}$$

(a) For what values of a and b does the system of equations have no solution?

(b) For what values of a and b does the system of equations have exactly one solution?

(c) For what values of a and b does the system of equations have infinitely many solutions?

DATE: Thursday, April 17 2008 PAPER # 329 DEPARTMENT & COURSE NO: MATH 1300 EXAMINATION: Vector Geometry & Linear Algebra

[16] **2.** Let

$$A = \begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 0 & 1 & 0 \\ -1 & 1 & 0 & 2 \\ 3 & 0 & -2 & -3 \end{bmatrix}$$

(a) Evaluate the missing 2, 3 entry x in the adjoint of A below:

$$adj(A) = \begin{bmatrix} 3 & 7 & 0 & 2 \\ -3 & 5 & x & 4 \\ 0 & 9 & 0 & 0 \\ 3 & 1 & 0 & -1 \end{bmatrix}$$

(b) The determinant of A is 9. Find A^{-1} by using Part (a).

(c) Let $A\mathbf{x} = \mathbf{b}$ where

$$\mathbf{b} = \begin{pmatrix} 1\\ 2\\ -1\\ 4 \end{pmatrix} \quad \text{and} \quad \mathbf{x} = \begin{pmatrix} x_1\\ x_2\\ x_3\\ x_4 \end{pmatrix}.$$

Use A^{-1} from part (b) to find **x**. No credit will be given for any other method.

DATE: <u>Thursday, April 17 2008</u> PAPER <u># 329</u> DEPARTMENT & COURSE NO: <u>MATH 1300</u> EXAMINATION: Vector Geometry & Linear Algebra

- [12] **3.** State **clearly** whether each of the following statements is true or false. *No explanation is necessary.*
 - (a) det $((2A)^{-1}(A^T)(2A^T)) = \det(A)$ for all square matrices A.
 - (b) If $\det(AB^{-1}) = \det(A^{-1}B)$, then A = B.
 - (c) The product of elementary matrices is always invertible.
 - (d) Let $A = (a_{ij})$ be the 2008 × 2008 matrix such that

$$a_{ij} = \begin{cases} 1, & \text{if } i \leq j, \\ 0, & \text{if } i > j. \end{cases}$$

Then A is invertible.

- (e) Let A be an $n \times n$ matrix. If A is invertible, then $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions.
- (f) The following augmented matrix is in reduced row echelon form.

DATE: Thursday, April 17 2008 PAPER # 329 DEPARTMENT & COURSE NO: MATH 1300 EXAMINATION: Vector Geometry & Linear Algebra

[12] 4. Let u = (2, -1, 3), v = (2, 3, -1), w = (4, 2, -2).
(a) Find the cosine of the angle θ between u and v.

(b) Find the area of the triangle with vertices (0, 0, 0), (2, 3, -1) and (4, 2, -2).

(c) Find the volume of the parallelepiped with sides \mathbf{u} , \mathbf{v} and \mathbf{w} .

DATE: Thursday, April 17 2008 PAPER # 329 DEPARTMENT & COURSE NO: MATH 1300 EXAMINATION: Vector Geometry & Linear Algebra

[12] **5.** Let *l* be the line x = -2 + 2t, y = 1 - 2t, z = -3 + t.

(a) Find an equation of the plane W perpendicular to l through the point (-1, -4, 3).

(b) Find the point of intersection of l and W.

(c) Show that the plane 5x + 3y - 4z + 11 = 0 is perpendicular to W.

DATE: Thursday, April 17 2008 PAPER # 329 DEPARTMENT & COURSE NO: MATH 1300 EXAMINATION: Vector Geometry & Linear Algebra

[12] 6. Let u = (2, -1, 2, 3), v = (4, 1, -1, 3).
(a) Find a unit vector in the direction of v.

(b) Find all values of k such that $||k\mathbf{u} - k\mathbf{v}|| = 3$.

(c) For what values of s and t is $\mathbf{w} = (1, 2, s, t)$ orthogonal to both **u** and **v**?

DATE: Thursday, April 17 2008 PAPER # 329 DEPARTMENT & COURSE NO: MATH 1300 EXAMINATION: Vector Geometry & Linear Algebra FINAL EXAMINATION PAGE: 7 of 10 TIME: <u>2 hours</u> EXAMINER: <u>various</u>

[12] **7.** The matrix

$$A = \begin{bmatrix} 1 & 2 & 0 & 4 & 0 & 0 & 0 \\ 1 & 2 & 1 & 8 & 1 & 6 & 7 \\ 0 & 0 & 1 & 4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 6 & 7 \end{bmatrix}$$

has reduced row echelon form

$$R = \begin{bmatrix} 1 & 2 & 0 & 4 & 0 & 0 & 0 \\ 0 & 0 & 1 & 4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 6 & 7 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- (a) The dimension of the null space of A is _____.
- (b) Find a basis of the null space of A.

- (c) The dimension of the row space of A is _____.
- (d) Find a basis of the row space of A.

- (e) The dimension of the column space of A is _____.
- (f) Find a basis of the column space of A.

DATE: Thursday, April 17 2008 PAPER # 329 DEPARTMENT & COURSE NO: MATH 1300 EXAMINATION: Vector Geometry & Linear Algebra

[9] 8. Suppose that a and b are orthogonal vectors in R³ with unit length.
(a) Give a reason why {a, b} is not a basis of R³.

(b) Give a reason why $\{\mathbf{a}, \mathbf{b}, \mathbf{a} + \mathbf{b}, \mathbf{a} - \mathbf{b}\}$ is not a basis of \mathbb{R}^3 .

(c) Give a reason why $\{\mathbf{a}, \mathbf{b}, 2\mathbf{a} - 3\mathbf{b}\}$ is not a basis of \mathbb{R}^3 .

DATE: Thursday, April 17 2008 FIN PAPER # 329 DEPARTMENT & COURSE NO: MATH 1300 EXAMINATION: Vector Geometry & Linear Algebra

- [15] **9.** For the vector spaces V and W given below, state whether W is a subspace of V. Justify your answer.
 - (a) $V = M_{2\times 2}$, the set of 2×2 matrices, and W consists of all 2×2 invertible matrices.

(b) $V = M_{2\times 2}$, and W consists of all 2×2 matrices with at least one zero row.

(c) $V = \mathbb{R}^3$ and W consists of all vectors in \mathbb{R}^3 of the form (a, b, a - b).

DATE: Thursday, April 17 2008 PAPER # 329 DEPARTMENT & COURSE NO: MATH 1300 EXAMINATION: Vector Geometry & Linear Algebra

[10]**10.** Let $\mathbf{u}_1 = (1, 2, 0, 3)$, $\mathbf{u}_2 = (0, 1, 2, 1)$, $\mathbf{v}_1 = (1, 3, 2, 4)$ and $\mathbf{v}_2 = (1, 0, 0, 2)$.

Let $V = \operatorname{span}{\{\mathbf{u}_1, \mathbf{u}_2\}}.$

(a) Is \mathbf{v}_1 in V? Justify your answer.

(b) Is \mathbf{v}_2 in V? Justify your answer.

(c) What is the dimension of V? Find a basis for V and justify your answer.