Mathematics 1300 Final Exam
 April 13, 2009

1. (14) Let $P(-1,1,1), Q(1,2,3)$ and $R(2,1,0)$ be points in R^{3}.
(a) Find the equation of the plane in R^{3} containing P, Q and R.

Answer: $Q-P=(2,1,2), R-P=(3,0,-1)$ and $(2,1,2) \times$ $(3,0,-1)=(-1,8,-3)$. Using this as a direction number and evaluating at (any) one point gives $-x+8 y-3 z=6$. Alternatively, solve $a x+b y+c z=d$ for a, b and c. The reduced row echelon form of

$$
A=\left[\begin{array}{rrrr}
-1 & 1 & 1 & d \\
1 & 2 & 3 & d \\
2 & 1 & 0 & d
\end{array}\right]
$$

is

$$
A=\left[\begin{array}{rrrr}
1 & 0 & 0 & -d / 6 \\
0 & 1 & 0 & 4 d / 3 \\
0 & 0 & 1 & -d / 2
\end{array}\right]
$$

Hence $-\frac{d}{6} x+\frac{4 d}{3} y-\frac{d}{2}=d$, or $x-8 y+3 z=-6$.
(b) Find the equation of line L in R^{3} passing through P and Q.

Answer: The line consists of all points of the form:

$$
(-1,1,1)+t(2,1,2) \text { or, alternatively, }(1,2,3)+t(2,1,2)
$$

(c) Find the area A of the triangle determined by P, Q and R.

Answer: The area is

$$
\frac{1}{2}\|(-1,8,-3)\|=\frac{1}{2} \sqrt{74}
$$

(d) Find the point of intersection of L and the $x y$-plane.

Answer: For the z coordinate of $(-1,1,1)+t(2,1,2)$ to be 0 we need $1+2 t=0$, or $t=-\frac{1}{2}$. Then $(-1,1,1)-\frac{1}{2}(2,1,2)=$ $\left(-2, \frac{1}{2}, 0\right)$. Alternatively, for $(1,2,3)+t(2,1,2)$ we get $t=-\frac{3}{2}$ so that $(1,2,3)-\frac{3}{2}(2,1,2)=\left(-2, \frac{1}{2}, 0\right)$.
2. (15) Let

$$
A=\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(a) Find the determinant of A.

Answer: Expand on last row and then on the last column to get

$$
\operatorname{det}\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\operatorname{det}\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]=\operatorname{det}\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=1
$$

Alternatively, the one elementary row operation $R_{3} \leftarrow R_{3}-R_{1}$ makes the matrix upper triangluar. The determinant is then the product of the diagonal elements, all of which are one.
(b) Find A^{-1}.

Answer:

$$
\begin{aligned}
& {\left[\begin{array}{llll|llll}
1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]} \\
& R_{3} \leftarrow R_{3}-R_{1} \\
& {\left[\begin{array}{rrrr|rrrr}
1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 & -1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]} \\
& R_{1} \leftarrow R_{1}-R_{2} \\
& {\left[\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 & -1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]} \\
& R_{2} \leftarrow R_{2}-R_{4} \\
& R_{3} \leftarrow R_{3}+R_{4} \\
& {\left[\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 & -1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

and so

$$
A^{-1}=\left[\begin{array}{rrrr}
1 & -1 & 0 & 0 \\
0 & 1 & 0 & -1 \\
-1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(c) Find all solutions \mathbf{x} to

$$
A \mathbf{x}=\left[\begin{array}{l}
1 \\
2 \\
2 \\
1
\end{array}\right]
$$

Answer: Multiply the equation by A^{-1} to get

$$
\mathbf{x}=\left[\begin{array}{rrrr}
1 & -1 & 0 & 0 \\
0 & 1 & 0 & -1 \\
-1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{r}
-1 \\
1 \\
1 \\
1
\end{array}\right]
$$

(d) Find the adjoint of A.

Answer: \quad Since $\operatorname{adj}(A)=\operatorname{det}(A) A^{-1}$, we have $\operatorname{adj}(A)=A^{-1}$.
3. (24) Let

$$
A=\left[\begin{array}{rrr}
1 & 0 & 0 \\
1 & 1 & 1 \\
0 & 0 & -1
\end{array}\right]
$$

Evaluate the following matrices:
(a) A^{T} Answer: $A=\left[\begin{array}{rrr}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & -1\end{array}\right]$
(b) A^{-1} Answer: $\quad A^{-1}=\left[\begin{array}{rrr}1 & 0 & 0 \\ -1 & 1 & 1 \\ 0 & 0 & -1\end{array}\right]$
(c) $\left(A^{-1}\right)^{T}$ Answer: $\left(A^{-1}\right)^{T}=\left[\begin{array}{rrr}1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & -1\end{array}\right]$
(d) $\left(A^{T}\right)^{-1}$ Answer: $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
(e) $\left(A^{-1}\right)^{2}$ Answer: $\left(A^{-1}\right)^{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(f) $\left(A^{2}\right)^{-1}$ Answer: $\left(A^{2}\right)^{-1}=\left(A^{-1}\right)^{2}$
4. (10)
(a) Calculate $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$, the projection of \mathbf{u} along \mathbf{v}, where $\mathbf{u}=(2,-2,3)$ and $\mathbf{v}=(2,1,3)$.
Answer:

$$
\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}=\frac{11}{14}(2,1,3)
$$

(b) Find a unit vector in the direction of $\mathbf{w}=(4,-3,2,1)$.

Answer: $\|\mathbf{w}\|^{2}=30$ and so the unit vector in the direction of \mathbf{w} are $\frac{1}{\sqrt{30}}(4,-3,2,1)$.
(c) Find all values t so that vectors $(2,5,-3,6)$ and $(4, t, 7,1)$ are orthogonal.
Answer: Orthogonally implies that $0=(2,5,-3,6) \cdot(4, t, 7,1)=$ $5 t-7$ and so $t=\frac{7}{5}$.
5. (16) Let $\mathbf{u}=(1,0,1)$ and $\mathbf{v}=(0,1,1)$.
(a) Find a vector \mathbf{w} in R^{3} that is not in the span of $\{\mathbf{u}, \mathbf{v}\}$. You must justify your answer.
Answer: $\quad c \mathbf{u}+d \mathbf{v}=(c, d, c+d)$. Hence any vector $\left(w_{1}, w_{2}, w_{3}\right)$ with $w_{3} \neq w_{1}+w_{2}$ is not in the span. For example $\mathbf{w}=(0,0,1)$ is not in the span of $\{\mathbf{u}, \mathbf{v}\}$.
(b) Find a vector \mathbf{w} in R^{3} so that $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a basis for R^{3}. You must justify your answer.
Answer: The set $\{\mathbf{u}, \mathbf{v}\}$ is linearly independent. Any vector not in the span of $\{\mathbf{u}, \mathbf{v}\}$ will give three linearly independent vectors in R^{3}, which makes it a basis.
(c) Let $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ be the basis you gave in part (b). Find real numbers a, b and c so that $(25,13,-17)=a \mathbf{u}+b \mathbf{v}+c \mathbf{w}$.
Answer: We need to solve

$$
(25,13,-17)=a \mathbf{u}+b \mathbf{v}+c \mathbf{w}=(a, b, a+b+c)
$$

In this case $a=25, b=13$ and $c=-55$.
(d) Show that $C=\left[\begin{array}{rr}11 & 17 \\ 1 & 13\end{array}\right]$ is in the span of $\{A, B\}$ where $A=$ $\left[\begin{array}{rr}2 & -2 \\ 4 & 3\end{array}\right]$ and $B=\left[\begin{array}{ll}3 & 1 \\ 3 & 4\end{array}\right]$.
Answer: We need to find c and d so that

$$
c\left[\begin{array}{rr}
2 & -2 \\
4 & 3
\end{array}\right]+d\left[\begin{array}{ll}
3 & 1 \\
3 & 4
\end{array}\right]=\left[\begin{array}{rr}
11 & 17 \\
1 & 13
\end{array}\right]
$$

This translates to four equations in two unknowns:

$$
\begin{aligned}
2 c+3 d & =11 \\
-2 c+d & =17 \\
4 c+3 d & =1 \\
3 c+4 d & =13
\end{aligned}
$$

whose solution is $c=-5$ and $d=7$.
6. (4) In this question, each answer is a number.
(a) The smallest possible value for the dimension of the null space of a 17×23 matrix is \qquad —.
(b) The largest possible value of the dimension of the column space of a 17×23 matrix is \qquad .
(c) Let A be a 17×23 matrix whose null space has dimension 15 . The dimension of the row space is \qquad
(d) the span of $(1,1,1,1,1),(1,1,0,0,1)$ and $(0,0,1,1,-1)$ has dimension 3 .
7. (18) The matrix

$$
A=\left[\begin{array}{rrrrrrr}
2 & -10 & 1 & 1 & 22 & -2 & 0 \\
4 & -20 & 1 & 1 & 36 & 0 & 16 \\
1 & -5 & 2 & 2 & 23 & 3 & 26 \\
4 & -20 & -2 & -2 & 12 & 3 & 19
\end{array}\right]
$$

has reduced row echelon form

$$
R=\left[\begin{array}{rrrrrrr}
1 & -5 & 0 & 0 & 7 & 0 & 3 \\
0 & 0 & 1 & 1 & 8 & 0 & 4 \\
0 & 0 & 0 & 0 & 0 & 1 & 5 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Find a basis for the null space of A.

Answer: \quad The columns of A and R correspond to the variables x_{1}, \ldots, x_{7}. For the free variables, let

$$
\begin{aligned}
x_{2} & =s, \\
x_{4} & =t, \\
x_{5} & =u, \\
x_{7} & =v
\end{aligned}
$$

and then

$$
\begin{aligned}
& x_{1}=5 s-7 u-3 v \\
& x_{3}=-t-8 u-4 v \\
& x_{6}=-5 v
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right) & =s(5,1,0,0,0,0,0) \\
& +t(0,0,-1,1,0,0,0) \\
& +u(-7,0,-8,0,1,0,0) \\
& +v(-3,0,-4,0,0,-5,1)
\end{aligned}
$$

The basis is then

$$
\begin{aligned}
& \{(5,1,0,0,0,0,0),(0,0,-1,1,0,0,0) \\
& \quad(-7,0,-8,0,1,0,0),(-3,0,-4,0,0,-5,1)\}
\end{aligned}
$$

(b) Find a basis for the row space of A. Answer: Rows 1,2 and 3 of R.
(c) Find a basis for the column space of A. Answer: Columns 1, 3 and 6 of A
(d) The dimension of the null space of A is 4
(e) The dimension of the row space of A is \qquad
(f) The dimension of the column space of A is 3
8. (12) In each part of this question a subset W of the vector space R^{5} is defined. State whether or not W is a subspace of R^{5}. Justify your answer.
(a) $W=\{(0, a, 2 a+3 b, 0,5 a-6 b+3 c) \mid a, b, c$ in R $\}$. Answer: W is closed under addition and scalar multiplication, so it is a subspace of R^{5}.
(b) $W=\{(0, a, 2 a+3,0, a+b+c) \mid a, b, c$ in R$\}$. Answer: The third coordinate of vectors in W is not closed under addition or scalar multiplication, so W is not a subspace. of R^{5}. Alternatively, since W does not contain the zero vector, W can not be a subspace.
(c) $W=\{(a, b, c, d, e) \mid 7 a+5 b+3 c+2 d+e=0\}$. Answer: W is closed under addition and scalar multiplication, so it is a subspace of R^{5}.
9. (7) Indicate whether each statement is true or false:
(a) Whenever a finite set S spans a vector space V, then there is a subset of S which is a basis of V \qquad
(b) If a vector v is not in the span of $\left\{u_{1}, u_{2}, u_{3}\right\}$, then the set $\left\{u_{1}, u_{2}, u_{3}\right\}$ is linearly independent
\square True \qquad False
(c) If V and W are subspace of some R^{n}, then the set $\{v+w \mid v$ in V and w in $W\}$ is a subspace of R^{n} \qquad
(d) There is a basis for R^{6} which contains the following three vectors: $(5,3,4,7,5,6),(0,6,5,4,3,7)$ and $(0,0,9,2,10,3)$

\square True	\square False
\square True	\boxed{x} False
\boxed{x} True	\square False

(g) $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B) \ldots . \square$ True $\quad x$ False

Suggested point distribution:

1 a	4	2 a	4	3 a	6	4 a	4	5 a	4	6 a	1	7 a	4	8 a	4	9
1 b	4	2 b	4	3 b	6	4 b	3	5 b	4	6 b	1	7 b	4	8 b	4	number right -
1 c	4	2 c	4	3 c	6	4 c	3	5 c	4	6 c	1	7 c	4	8 c	4	number wrong
1 d	2	2 d	3	3 d	6			5 d	4	6 d	1	7 d	2			with minimum
				3 e	6							7 e	2			0
				3 f	6							7 e	2			
	14		15		24		10		16		4		18		12	9
total: 120																

