Anaerobic Digestion Model with Multi-Dimensional Architecture (ADM-MDA)

Lunch bag seminar
2011-05-18

Ph.D. Candidacy exam
2011-04-27
David L. F. Gaden
Outline

- Introduction
- Problem
- Proposed solution
- Literature review
- Methodology
- Code development
- Results
- Tasks remaining
What is anaerobic digestion?
- The breaking down of biomass in the absence of oxygen
- Treats waste products while simultaneously producing renewable energy (biogas)

Primary purpose:
- Waste treatment
- Energy production
- Pollution reduction
- Odour mitigation
• Applications
 ◦ Industrial wastewater treatment
 ◦ Municipal wastewater treatment
 ◦ Agricultural wastewater treatment
Stages of anaerobic digestion

1. Disintegration
• Stages of anaerobic digestion

2. Hydrolysis
Introduction

• Stages of anaerobic digestion

3. Acidogenesis

Volatile Fatty Acids
• Stages of anaerobic digestion

4. Acetogenesis

Volatile Fatty Acids \rightarrow \text{Acetate}

\text{Hydrogen}
• Stages of anaerobic digestion

5. Methanogenesis
Introduction

- Types of digesters

Diagram: Plug flow digester with inflow, effluent, and biogas output.
Types of digesters

Influent

Biogas

Effluent

STR digester

Introduction
Introduction

- Types of digesters

- Upflow anaerobic sludge blanket digester

 - Influent
 - Effluent

 Biogas
• Types of digesters

Introduction

Anaerobic clavigester

Influent

Effluent

Biogas
• Reliability issues

Unreliable

Well established
• Modelling anaerobic digesters
 ◦ Current state of the art is ADM1:

- Modelling anaerobic digesters
 - Current state of the art is ADM1:
 - A bulk model

- No spatial variation

\[
\frac{\partial S}{\partial x} = \frac{\partial S}{\partial y} = \frac{\partial S}{\partial z} = 0
\]

- Uniform properties
• Objective: a spatially-resolved ADM1

• ADM-MDA – Anaerobic Digestion Model with Multi-Dimensional Architecture

Proposed solution
Gas volume

\[S_{\text{gas, var}} \quad (3) \]

Liquid volume

\[S_{\text{var}} \quad (21) \]
\[X_{\text{var}} \quad (12) \]
\[
\frac{dm_{\text{var}}}{dt} = m_{\text{var,in}} - m_{\text{var,out}} + m_{\text{var,react}}
\]

\[
V_{\text{liq}} \frac{dS_{\text{var}}}{dt} = Q_{\text{liq}} S_{\text{var,in}} - Q_{\text{liq}} S_{\text{var,out}} + V_{\text{liq}} r_{\text{var}}
\]

\[
\frac{dS_{\text{var}}}{dt} = \frac{V_{\text{liq}}}{Q_{\text{liq}}} (S_{\text{var,in}} - S_{\text{var}}) + r_{\text{var}}
\]
<table>
<thead>
<tr>
<th>Component</th>
<th>j</th>
<th>Process</th>
<th>S_{su}</th>
<th>S_{aa}</th>
<th>S_{fa}</th>
<th>S_{i}</th>
<th>X_{c}</th>
<th>X_{ch}</th>
<th>X_{pr}</th>
<th>X_{li}</th>
<th>X_{l}</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>Disintegration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$f_{sl,xc}$</td>
<td>-1</td>
<td>$f_{ch,xc}$</td>
<td></td>
<td>$f_{pr,xc}$</td>
<td>$f_{li,xc}$</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Hydrolysis of Carbohydrates</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Hydrolysis of Proteins</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Hydrolysis of Lipids</td>
<td>1-$f_{fa,li}$</td>
<td>$f_{fa,li}$</td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Disintegration
- Particulate composites (X_c)
- Inerts (S_i)

Hydrolysis
- Proteins (X_{pr})
- Sugars (S_{su})
- Lipids (X_{li})
- Fatty acids (S_{fa})
- Carbohydrates (S_{ch})
<table>
<thead>
<tr>
<th>Component</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>j Process</td>
<td></td>
</tr>
<tr>
<td>0 Disintegration</td>
<td>S_{su}</td>
<td>S_{aa}</td>
<td>S_{fa}</td>
<td>S_l</td>
<td>X_c</td>
<td>X_{ch}</td>
<td>X_{pr}</td>
<td>X_{li}</td>
<td>X_l</td>
<td>ρ_j</td>
</tr>
<tr>
<td>1 Hydrolysis of Carbohydrates</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Hydrolysis of Proteins</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Hydrolysis of Lipids</td>
<td></td>
<td></td>
<td>1-$f_{fa,li}$</td>
<td>$f_{fa,li}$</td>
<td>$f_{ch,xc}$</td>
<td>$f_{ch,xc}$</td>
<td>$f_{pr,xc}$</td>
<td>$f_{li,xc}$</td>
<td>$f_{li,xc}$</td>
<td></td>
</tr>
</tbody>
</table>

\[r_{S_{su}} = k_{hyd,ch}X_{ch} + (-f_{fa,li}k_{hyd,li}X_{li}) \]

Methodology – Theory – ADM1
Methodology – Theory – ADM1
Methodology – Theory – ADM1
• Governing equations:
 ◦ Conservation of mass:
 \[\nabla \cdot \mathbf{U} = 0 \n\]
 ◦ Conservation of momentum:
 \[\rho \frac{D\mathbf{U}}{Dt} = -\nabla p + \mu \nabla^2 \mathbf{U} - \rho_{ref} \beta (T - T_{ref}) \n\]
 ◦ Conservation of energy:
 \[\frac{\partial T}{\partial t} + \nabla \cdot (\mathbf{U} T) - \nabla \cdot (\alpha \nabla T) = 0 \n\]
- Two options:
 1. Start with ADM1 and write CFD into it; or
 2. Start with CFD and write ADM1 into it.

- ODE:
 \[
 \frac{dS_{var}}{dt} = \frac{V_{liq}}{Q_{liq}} (\psi_{var,in} - \dot{S}_{var}) + r_{var}
 \]

- PDE:
 \[
 \frac{\partial S_{var}}{\partial t} + \nabla \cdot \nabla S_{var} + \nabla \cdot \Gamma \nabla S_{var} = r_{var}
 \]
Three biochemistry strategies:
1. Source term solver
2. ODE solver
3. Coupled solver
Three biochemistry strategies:

1. Source term solver

\[
\frac{\partial S_{var}}{\partial t} + \nabla \cdot \left(\mathbf{U} S_{var} \right) + \nabla \cdot \mathbf{G} \nabla S_{var} = r_{var}
\]

\[
\frac{dS_{var}}{dt} = \frac{V_{liq}}{Q_{liq}} \left(\xi_{var,in} - S_{var} \right) + r_{var}
\]
- Three biochemistry strategies:
 2. ODE solver
Three biochemistry strategies:

3. Coupled solver

\[a_p S_p + \sum_i a_i S_i = b_p \]

\[
\begin{bmatrix}
 S_{su} S_{su} & S_{su} S_{aa} & S_{su} S_{fa} \\
 S_{aa} S_{su} & S_{aa} S_{aa} & S_{aa} S_{fa} \\
 S_{fa} S_{su} & S_{fa} S_{aa} & S_{fa} S_{fa}
\end{bmatrix}

\begin{bmatrix}
 S_{su} \\
 S_{aa} \\
 S_{fa}
\end{bmatrix}

+ \sum_i \begin{bmatrix}
 a_i S_{su} & 0 & 0 \\
 0 & a_i S_{aa} & 0 \\
 0 & 0 & a_i S_{fa}
\end{bmatrix}

\begin{bmatrix}
 S_{su,i} \\
 S_{aa,i} \\
 S_{fa,i}
\end{bmatrix} =

\begin{bmatrix}
 b_{su} \\
 b_{aa} \\
 b_{fa}
\end{bmatrix}

\[
\begin{bmatrix}
 a_{p,0} & a_{e,0} & 0 & 0 & 0 \\
 a_{w,1} & a_{p,1} & a_{e,1} & 0 & 0 \\
 0 & a_{w,2} & a_{p,2} & a_{e,2} & 0 \\
 0 & 0 & a_{w,3} & a_{p,3} & a_{e,3} \\
 0 & 0 & 0 & a_{w,4} & a_{p,4}
\end{bmatrix}

\begin{bmatrix}
 S_0 \\
 S_1 \\
 S_2 \\
 S_3 \\
 S_4
\end{bmatrix} =

\begin{bmatrix}
 b_{p,0} \\
 b_{p,1} \\
 b_{p,2} \\
 b_{p,3} \\
 b_{p,4}
\end{bmatrix}

Methodology – Theory – ADM-MDA
• Three biochemistry strategies:
 3. Coupled solver

Methodology – Theory – ADM-MDA
Time scale issue
- ADM1: $dt \approx 15 \text{ min}$
- CFD: $dt \approx 1 \text{ s}$

"multiSolver"
• Length scale issue

ADM1 \rightarrow \text{Prolongation} \rightarrow \text{Restriction} \rightarrow \text{CFD}

“dualGrid”

Methodology – Theory – ADM-MDA
Accessibility

- "equationReader"
- The ability to read equations from a text file
Code development

- **Transient solver**
 - PISO
 - RANS turbulence
 - Temperature
 - Scalar transport
 - Non-Newtonian
 - Buoyancy
 - Particle model
 - Steady state detection

- **Steady state solver**
 - Scalar transport
 - Particle model
 - Gas model

- **Control**
 - multiSolver
 - dualGrid

- **Flow**
 - ODE solver
 - Implicit solver (S_{h2})
 - Implicit solver (ions)

- **Biochemistry**
 - EquationReader
 - Framework
Code development
Code development

Transient solver
- PISO
- RANS turbulence
- Temperature
- Scalar transport
- Non-Newtonian
- Buoyancy
- Particle model
- Steady state detection

Control
- multiSolver
- dualGrid

Flow
- Scalar transport
- Particle model
- Gas model

Biochemistry
- ODE solver
- Implicit solver (S_{H2})
- Implicit solver (ions)

Framework
- equationReader

Steady state solver
• Bulk model
 ◦ Written in Excel + Visual Basic macros
• Post processing routines
 ◦ Instantly produce comparisons between bulk model & ADM-MDA
 ◦ Written in Python
Bulk model verification

Results
Results

Boussinesq buoyancy model validation
Two problems with the model:
 ◦ Efficiency
 ◦ Transport deviation
Results

<table>
<thead>
<tr>
<th>Change</th>
<th>Simulation Time</th>
<th>Real Time</th>
<th>Benchmark Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>27 [s]</td>
<td>6 [hr]</td>
<td>>100,000 [yr]</td>
</tr>
</tbody>
</table>

(1000 cells, 1000 days)
\[
\dot{S}_{\text{trans}} = \dot{S}_{\text{trans}} \bigg|_{r=0} + \Delta \dot{S}_{\text{trans}} \bigg|_{r \neq 0}
\]
Results

<table>
<thead>
<tr>
<th>Change</th>
<th>Simulation Time</th>
<th>Real Time</th>
<th>Benchmark Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>27 [s]</td>
<td>6 [hr]</td>
<td>>100,000 [yr]</td>
</tr>
<tr>
<td>Segregated flow</td>
<td>1 [dy]</td>
<td>18 [hr]</td>
<td>128 [yr]</td>
</tr>
</tbody>
</table>

(1000 cells, 1000 days)
Results

Semi-implicit Bulirsch Stoer

Solve derived
ODE ddt
Implicit S_{h2} solver
Implicit ion solver

"innerLoops"
Results

<table>
<thead>
<tr>
<th>Change</th>
<th>Simulation Time</th>
<th>Real Time</th>
<th>Benchmark Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>27 [s]</td>
<td>6 [hr]</td>
<td>>100,000 [yr]</td>
</tr>
<tr>
<td>Segregated flow</td>
<td>1 [dy]</td>
<td>18 [hr]</td>
<td>128 [yr]</td>
</tr>
<tr>
<td>Inner loops</td>
<td>1 [dy] 100 [dy]</td>
<td>12 [min] 5:32[hr:min]</td>
<td>144 [dy]</td>
</tr>
</tbody>
</table>

(1000 cells, 1000 days)
<table>
<thead>
<tr>
<th>Component</th>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td></td>
<td>S_{su}</td>
<td>S_{aa}</td>
<td>S_{fa}</td>
<td>S_{i}</td>
<td>X_{c}</td>
<td>X_{ch}</td>
<td>X_{pr}</td>
<td>X_{li}</td>
<td>X_{l}</td>
<td>ρ_j</td>
</tr>
<tr>
<td>0 Disintegration</td>
<td></td>
</tr>
<tr>
<td>1 Hydrolysis of Carbohydrates</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>$f_{sl,xc}$</td>
<td>-1</td>
<td>$f_{ch,xc}$</td>
<td>$f_{pr,xc}$</td>
<td>$f_{li,xc}$</td>
<td>$f_{xl,xc}$</td>
</tr>
<tr>
<td>2 Hydrolysis of Proteins</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Hydrolysis of Lipids</td>
<td></td>
<td>$1-f_{fa,li}$</td>
<td>$f_{fa,li}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change</td>
<td>Simulation Time</td>
<td>Real Time</td>
<td>Benchmark Estimate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
<td>------------</td>
<td>--------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial</td>
<td>27 [s]</td>
<td>6 [hr]</td>
<td>>100,000 [yr]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segregated flow</td>
<td>1 [dy]</td>
<td>18 [hr]</td>
<td>128 [yr]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inner loops</td>
<td>1 [dy]</td>
<td>12 [min]</td>
<td>144 [dy]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 [dy]</td>
<td>5:32 [hr:min]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static yields</td>
<td>1 [dy]</td>
<td>62 [s]</td>
<td>12.5 [dy]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
float evaluate(float a, float b, string operation) {
 if (operation == "plus") {
 return a + b;
 }
 if (operation == "minus") {
 return a - b;
 }
 if (operation == "times") {
 return a * b;
 }
 if (operation == "divide") {
 return a / b;
 }
}

float plus(float a, float b) {
 return a + b;
}

float minus(float a, float b) {
 return a - b;
}

float times(float a, float b) {
 return a * b;
}

float divide(float a, float b) {
 return a / b;
}
<table>
<thead>
<tr>
<th>Change</th>
<th>Simulation Time</th>
<th>Real Time</th>
<th>Benchmark Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>27 [s]</td>
<td>6 [hr]</td>
<td>>100,000 [yr]</td>
</tr>
<tr>
<td>Segregated flow</td>
<td>1 [dy]</td>
<td>18 [hr]</td>
<td>128 [yr]</td>
</tr>
<tr>
<td>Inner loops</td>
<td>1 [dy] 100 [dy]</td>
<td>12 [min] 5:32[hr:min]</td>
<td>144 [dy]</td>
</tr>
<tr>
<td>Static yields</td>
<td>1 [dy]</td>
<td>62 [s]</td>
<td>12.5 [dy]</td>
</tr>
<tr>
<td>Function Pointers</td>
<td>1[dy] 100 [dy]</td>
<td>58 [s] 7 [min]</td>
<td>3.17 [dy]</td>
</tr>
</tbody>
</table>

The solver is now parallelized!
1 day (with flow)

Results
100 days (with flow)
100 days (no flow)
• Quad precision
• Pseudo-coupled solver
• Mini timesteps for transport
• Improve ADM1 numerical stability
• Averaged noisy transport
• Agglomeration
• Judgement day ... (May 21st)
• Solve transport error ... (June 1st)
• Gas model ... (June 22nd)
• Particle model ... (July 15th)
• Dual-grid ... (August 1st)
• Validate model ... (Octoberuary 15th)
• Write thesis ... (November 30th)