
Question. Show that R
2 is a vector space.

Solution. We need to check each and every axiom of a vector space to know that it is in fact a vector space.

A1: Let (a, b), (c, d) ∈ R
2. Then

(a, b) + (c, d) = (a + c, b + d) ∈ R
2.

Therefore A1 holds.

A2: Let (a, b), (c, d) ∈ R
2. Then

(a, b) + (c, d) = (a + c, b + d)

= (c + a, d + b)

= (c, d) + (a, b).

Therefore A2 holds.

A3: Let (a, b), (c, d), (e, f) ∈ R
2. Then

(a, b) + ((c, d) + (e, f)) = (a, b) + (c + e, d + f)

= (a + (c + e), b + (d + f))

= ((a + c) + e, (b + d) + f)

= (a + c, b + d) + (e, f)

= ((a, b) + (c, d)) + (e, f).

Therefore A3 holds.

A4: Our claim is that the vector (0, 0) works. Let (a, b) ∈ R
2. Then

(0, 0) + (a, b) = (0 + a, 0 + b)

= (a, b)

Therefore, A4 holds.

A5: Let (a, b) ∈ R
2. Then we need to find “−(a, b)”. Our claim is that (−a,−b) works.

(a, b) + (−a,−b) = (a + −a, b + −b)

= (0, 0) = 0.

M1: Let k ∈ R, (a, b) ∈ R
2. Then

k(a, b) = (ka, kb) ∈ R
2.

Therefore M1 holds.

M2: Let k ∈ R, (a, b), (c, d) ∈ R
2. Then,

k((a, b) + (c, d)) = k(a + c, b + d)

= (k(a + c), k(b + d))

= (ka + kc, kb + kd)

= (ka, kb) + (kc, kd)

= k(a, b) + k(c, d).



Therefore M2 holds.

M3: Let k,m ∈ R, (a, b) ∈ R
2. Then

(k + m)(a, b) = ((k + m)a, (k + m)b)

= (ka + ma, kb + mb)

= (ka, kb) + (ma,mb)

= k(a, b) + m(a, b).

Therefore M3 holds.

M4: Let k,m ∈ R, (a, b) ∈ R
2. Then

k(m(a, b)) = k(ma,mb)

= (k(ma), k(mb))

= ((km)a, (km)b)

= (km)(a, b).

Therefore M4 holds.

M5: Let (a, b) ∈ R
2. Then,

1(a, b) = (1a, 1b) = (a, b).

Therefore M5 holds.



Question. Show that M2,2, the set of all 2 × 2 matrices, is a vector space.

Solution. We need to check each and every axiom of a vector space to know that it is in fact a vector space.

A1: Let

[

a1,1 a1,2

a2,1 a2,2

]

,

[

b1,1 b1,2

b2,1 b2,2

]

∈ M2,2. Then

[

a1,1 a1,2

a2,1 a2,2

]

+

[

b1,1 b1,2

b2,1 b2,2

]

=

[

a1,1 + b1,1 a1,2 + b1,2

a2,1 + b2,1 a2,2 + b2,2

]

,

which is also a 2 × 2 matrix. Therefore

[

a1,1 a1,2

a2,1 a2,2

]

+

[

b1,1 b1,2

b2,1 b2,2

]

∈ M2,2.

A2: Let

[

a1,1 a1,2

a2,1 a2,2

]

,

[

b1,1 b1,2

b2,1 b2,2

]

,

[

c1,1 c1,2

c2,1 c2,2

]

∈ M2,2. Then

[

a1,1 a1,2

a2,1 a2,2

]

+

([

b1,1 b1,2

b2,1 b2,2

]

+

[

c1,1 c1,2

c2,1 c2,2

])

=

[

a1,1 a1,2

a2,1 a2,2

]

+

([

b1,1 + c1,1 b1,2 + c1,2

b2,1 + c2,1 b2,2 + c2,2

])

=

[

a1,1 + b1,1 + c1,1 a1,2 + b1,2 + c1,2

a2,1 + b2,1 + c2,1 a2,2 + b2,2 + c2,2

]

=

([

a1,1 + b1,1 a1,2 + b1,2

a2,1 + b2,1 a2,2 + b2,2

])

+

[

c1,1 c1,2

c2,1 c2,2

]

=

([

a1,1 a1,2

a2,1 a2,2

]

+

[

b1,1 b1,2

b2,1 b2,2

])

+

[

c1,1 c1,2

c2,1 c2,2

]

.

A3: Let

[

a1,1 a1,2

a2,1 a2,2

]

,

[

b1,1 b1,2

b2,1 b2,2

]

∈ M2,2. Then

[

a1,1 a1,2

a2,1 a2,2

]

+

[

b1,1 b1,2

b2,1 b2,2

]

=

[

a1,1 + b1,1 a1,2 + b1,2

a2,1 + b2,1 a2,2 + b2,2

]

=

[

b1,1 + a1,1 b1,2 + a1,2

b2,1 + a2,1 b2,2 + a2,2

]

=

[

b1,1 b1,2

b2,1 b2,2

]

+

[

a1,1 a1,2

a2,1 a2,2

]

.

A4: The vector 0 is the zero matrix

[

0 0
0 0

]

, since for any

[

a1,1 a1,2

a2,1 a2,2

]

∈ M2,2,

[

0 0
0 0

]

+

[

a1,1 a1,2

a2,1 a2,2

]

=

[

a1,1 a1,2

a2,1 a2,2

]

.

A5: Let A =

[

a1,1 a1,2

a2,1 a2,2

]

∈ M2,2, and define −A to be the matrix

[

−a1,1 −a1,2

−a2,1 −a2,2

]

. Then

[

a1,1 a1,2

a2,1 a2,2

]

+

[

−a1,1 −a1,2

−a2,1 −a2,2

]

=

[

a1,1 − a1,1 a1,2 − a1,2

a2,1 − a2,1 a2,2 − a2,2

]

=

[

0 0
0 0

]

,

which is the zero vector 0 as required.



M1: Let r ∈ R, and let

[

a1,1 a1,2

a2,1 a2,2

]

∈ M2,2. Let

r

[

a1,1 a1,2

a2,1 a2,2

]

=

[

ra1,1 ra1,2

ra2,1 ra2,2

]

∈ M2,2.

M2: Let r ∈ R, and let

[

a1,1 a1,2

a2,1 a2,2

]

,

[

b1,1 b1,2

b2,1 b2,2

]

∈ M2,2. Then

r

([

a1,1 a1,2

a2,1 a2,2

]

+

[

b1,1 b1,2

b2,1 b2,2

])

= r

([

a1,1 + b1,1 a1,2 + b1,2

a2,1 + b2,1 a2,2 + b2,2

])

=

[

r(a1,1 + b1,1) r(a1,2 + b1,2)
r(a2,1 + b2,1) r(a2,2 + b2,2)

]

=

[

ra1,1 + rb1,1 ra1,2 + rb1,2

ra2,1 + rb2,1 ra2,2 + rb2,2

]

=

[

ra1,1 ra1,2

ra2,1 ra2,2

]

+

[

rb1,1 rb1,2

rb2,1 rb2,2

]

.

M3: Let r, s ∈ R, and let

[

a1,1 a1,2

a2,1 a2,2

]

∈ M2,2. Then

(r + s)

[

a1,1 a1,2

a2,1 a2,2

]

=

[

(r + s)a1,1 (r + s)a1,2

(r + s)a2,1 (r + s)a2,2

]

=

[

ra1,1 + sa1,1 ra1,2 + sa1,2

ra2,1 + sa2,1 ra2,2 + sa2,2

]

=

[

ra1,1 ra1,2

ra2,1 ra2,2

]

+

[

sa1,1 sa1,2

sa2,1 sa2,2

]

.

M4: Let r, s ∈ R, and let

[

a1,1 a1,2

a2,1 a2,2

]

∈ M2,2. Then

r

(

s

[

a1,1 a1,2

a2,1 a2,2

])

= r

([

sa1,1 sa1,2

sa2,1 sa2,2

])

=

[

r(sa1,1) r(sa1,2)
r(sa2,1) r(sa2,2)

]

=

[

(rs)a1,1 (rs)a1,2

(rs)a2,1 (rs)a2,2

]

= (rs)

[

a1,1 a1,2

a2,1 a2,2

]

M5: For any

[

a1,1 a1,2

a2,1 a2,2

]

∈ M2,2,

1

[

a1,1 a1,2

a2,1 a2,2

]

=

[

1a1,1 1a1,2

1a2,1 1a2,2

]

=

[

a1,1 a1,2

a2,1 a2,2

]

.



Question. Determine if the set V of solutions of the equation 2x − 3y + z = 1 is a vector space or not. Determine which

axioms of a vector space hold, and which ones fail.

The set V (together with the standard addition and scalar multiplication) is not a vector space. In fact, many of the rules
that a vector space must satisfy do not hold in this set. What follows are all the rules, and either proofs that they do hold,
or counter examples showing they do not hold.

A1: u,v ∈ V =⇒ u + v ∈ V (closure under addition)

Let u,v ∈ V . That is, u and v are solutions to the equation 2x − 3y + z = 1. More specifically, u and v are triples in R
3,

say u = (u1, u2, u3) and v = (v1, v2, v3), such that 2u1 − 3u2 + u3 = 1 and 2v1 − 3v2 + v3 = 1.

A1 does not hold here. For instance, take u = (0, 0, 1) and v = (1, 0,−1) (both are in V since both are solutions to
2x− 3y + z = 1). Then u+v = (1, 0, 0), but 2(1)− 3(0)+0 = 2 6= 1, and therefore u+v is not a solution to 2x− 3y + z = 1,
showing that u + v 6∈ V .

A2: Associativity holds since the real numbers are associative. Let u = (u1, u2, u3),v = (v1, v2, v3),w = (w1, w2, w3) ∈ V .
Then

u + (v + w) = (u1, u2, u3) + ((v1, v2, v3) + (w1, w2, w3))

= (u1, u2, u3) + (v1 + w1, v2 + w2, v3 + w3)

= (u1 + v1 + w1, u2 + v2 + w2, u3 + v3 + w3)

= (u1 + v1, u2 + v2, u3 + v3) + (w1, w2, w3)

= ((u1, u2, u3) + (v1, v2, v3)) + (w1, w2, w3)

= (u + v) + w

A3: Commutativity holds (similar to associativity above) just since the real numbers are commutative. Let u = (u1, u2, u3),v =
(v1, v2, v3) ∈ V . Then

u + v = (u1, u2, u3) + (v1, v2, v3)

= (u1 + v1, u2 + v2, u3 + v3)

= (v1 + u1, v2 + u2, v3 + u3)

= (v1, v2, v3) + (u1, u2, u3)

= v + u

A4: The requirement of a zero vector fails since there is only one possibility for a zero vector using the standard addition:
the vector (0, 0, 0), which is not a solution to the equation 2x− 3y + z = 1 (since 2(0)− 3(0) + (0) = 0). Therefore, A4 fails.

A5: The requirement of additive inverses fails as well. For instance, (0, 0, 1) is an element of V (as mentioned in A1 above).
The additive inverse of (0, 0, 1), using the standard addition, would be (0, 0,−1). However, (0, 0,−1) is not a solution to the
equation 2x − 3y + z = 1. Therefore (0, 0,−1) 6∈ V . In fact, the following proposition shows that for every v ∈ V , −v 6∈ V :

Proposition. If v ∈ V , then −v 6∈ V .

Proof. Let v = (v1, v2, v3) ∈ V . Then v is a solution to the equation 2x − 3y + z = 1, that is, 2v1 − 3v2 + v3 = 1.

Plugging in −v = (−v1,−v2,−v3) into the equation, we get:

2(−v1) − 3(−v2) + (−v3) = −2v1 + 3(v2) − v3

= (−1)(2v1 − 3v2 + v3)

= (−1)(1) (since 2v1 − 3v2 + v3 = 1)

= −1

6= 1.



Therefore, −v = (−v1,−v2,−v3) is not a solution to 2x − 3y + z = 1, and is therefore not in V .

One might say the above proposition proves this space TOTALLY fails A5, since for EVERY v ∈ V , the additive inverse of
v, that is −v, is not in V . Note the above also produces an infinite number of counter examples to M1 (below). For every
v ∈ V , (−1)v 6∈ V .

M1: Closure under multiplication does not hold. For example, take 2 ∈ R, and (0, 0, 1) ∈ V . Then 2(0, 0, 1) = (0, 0, 2), but
(0, 0, 2) is not a solution to the equation 2x− 3y + z = 1 (since 2(0)− 3(0) + (2) = 2 6= 1). Therefore, the space is not closed
under scalar multiplication.

M2, M3, M4, and M5 all hold, for the same reasons they hold in R
3 with the standard addition, proofs similar to the above

for A2 and A3.



Question. Let V be the set V = {red, blue}, that is, V is

the finite set consisting of just the two elements “red” and

“blue”. Define an addition on this set as follows:

⊕ Red Blue

Red Red Blue

Blue Blue Red

For any real number r, for any v ∈ V , define the scalar

multiplication r · v as

r · v =

{

red if r ≥ 0,

blue otherwise.

Show which axioms of a vector space hold, and which fail

for this set V together with these operations · and ⊕.

Solution.

A1: Let u,v ∈ V . Then by the definition of the addi-
tion, u + v is either red or blue, and is thus again in V .
Therefore V is closed under addition (A1 holds).

A2: Let u,v,w ∈ V . To show this holds, we could check
every possibility for u, v, and w one by one, but this would
take a while. To do it faster, I’ll be a little smarter about
what I check. If u = red, then

u ⊕ (v ⊕ w) = red ⊕ (v ⊕ w)

= v ⊕ w (red ⊕ x = x)

= (red ⊕ v) ⊕ w (red ⊕ v = v)

= (u ⊕ v) ⊕ w,

which is what was needed to be shown.

If v = red, then similarly,

u ⊕ (v ⊕ w) = u ⊕ (red ⊕ w)

= u ⊕ w

= (u ⊕ red) ⊕ w (u ⊕ red = u)

= (u ⊕ v) ⊕ w,

which is what was needed to be shown.

If w = red, then,

u ⊕ (v ⊕ w) = u ⊕ (v ⊕ red)

= u ⊕ v

= (u ⊕ v) ⊕ red

= (u ⊕ v) ⊕ w,

which again is what was needed to be shown.

If none of them are red, then all of them are blue, and we
get:

blue ⊕ (blue ⊕ blue) = blue ⊕ red

= blue

= red ⊕ blue

= (blue ⊕ blue) ⊕ blue,

which yet again is what needed to be shown. Therefore,
A2 holds.

A3: Let u,v ∈ V . If u = v, then clearly u⊕ v = v⊕u. If
u 6= v, then one is red and the other is blue, and since red
⊕ blue = blue ⊕ red (= blue), we have that A3 holds.

A4: We have already sort of seen that there is a zero vector.
The zero vector here is red. One can check this quickly:

red ⊕ red = red

blue ⊕ red = blue

Therefore, for all v ∈ V , v + red = v. Therefore red is a
zero vector, and A4 holds.

A5: To show that A5 holds, it suffices to find, “-red” and
“-blue”. The element “-red” (if it exists) should have the
property that red ⊕ (-red) equals the zero element, which
is also red. Note that red ⊕ red = red. Therefore choosing
-red = red works.

Similarly, “-blue” is an element (if any exists) such that
blue ⊕ (-blue) equals the zero element, red. Note that blue
⊕ blue = red. Therefore -blue = blue works. Therefore
A5 holds.

M1: Let k ∈ R, v ∈ V . Then k · v is, by the definition,
either red or blue, and is thus in V . Therefore M1 holds.

M2: Let k ∈ R, and let u,v ∈ V . Then

k · (u ⊕ v) =

{

red if k ≥ 0,

blue otherwise.

k · u ⊕ k · v =

{

red ⊕ red if k ≥ 0

blue ⊕ blue otherwise

= red.

This gives us a hint which values to pick to find a counter
example. Pick k = −1, and v = u = red. Then,

−1 · (red ⊕ red) = −1 · red

= blue,

but

−1 · red ⊕−1 · red = blue ⊕ blue

= red.



Therefore, M2 fails for the specific case k = −1 and
u = v = red, and so M2 fails.

M3: I claim that M3 fails. To show this, I need to produce
two real numbers r and s, and a vector v ∈ V such that
(r + s) · v 6= r · v + s · v.

Pick r = −1, s = 2, and v = red. Then,

(−1 + 2) · red = 1 · red

= red,

but

−1 · red + 2 · red = blue + red

= blue.

Therefore M3 fails.

M4: My claim is that M4 fails. To see this, let r = 2,
s = −2, and v = red. Then,

2 · (−2 · red) = 2 · blue

= red,

but

(2 ×−2) · red = −4 · red

= blue.

Therefore M4 fails.

M5: This fails since for any v ∈ V , 1·v = red. Specifically,

1 · blue = red,

and therefore M5 fails.

Therefore, A1, A2, A3, A4, A5, and M1 all hold, while
M2, M3, and M4 all fail. Therefore this is not a vector
space.



Question. Let V be the set R
2 with the following operations defined as follows:

• for any (x1, y1), (x2, y2) ∈ R
2, define

(x1, y1) + (x2, y2) = (2(x1 + y1 + x2 + y2),−1(x1 + y1 + x2 + y2)).

• for any k ∈ R, and for any (x1, y1) ∈ R
2, define k(x1, y1) = (kx1, ky1).

Is V together with these operations a vector space? If so, prove it. If not, show all axioms that fail, and explain why they fail.

Solution.

To check that V is a vector space, one must check each of the 10 axioms of a vector space to see if they hold.

A1: Let (a, b), (c, d) ∈ V . Then

(a, b) + (c, d) = (2(a + b + c + d),−1(a + b + c + d)) ∈ V.

Therefore V is closed under addition (A1 holds).

A2: Let (a, b), (c, d), (e, f) ∈ V . Then

(a, b) + ((c, d) + (e, f)) = (a, b) + (2(c + d + e + f),−1(c + d + e + f))

= (2(a + b + 2(c + d + e + f) + −1(c + d + e + f)),−1(a + b + 2(c + d + e + f) + −1(c + d + e + f)))

= (2(a + b + c + d + e + f),−1(a + b + c + d + e + f))

((a, b) + (c, d)) + (e, f) = (2(a + b + c + d),−1(a + b + c + d)) + (e, f)

= (2(2(a + b + c + d) + −1(a + b + c + d) + e + f),−1(2(a + b + c + d) + −1(a + b + c + d) + e + f))

= (2(a + b + c + d + e + f),−1(a + b + c + d + e + f))

Therefore this addition is associative, and so A2 holds.

A3: Let (a, b), (c, d) ∈ V . Then

(a, b) + (c, d) = (2(a + b + c + d),−1(a + b + c + d))

= (2(c + d + a + b),−1(c + d + a + b))

= (c, d) + (a, b)

Therefore A3 holds.

A4: I claim that A4 fails by proving the following proposition:

Proposition. There is no vector (x, y) ∈ V such that (1, 0) + (x, y) = (1, 0).

Proof. If such a vector was in V , then

(1, 0) + (x, y) = (1, 0)

(2(1 + x + y),−1(1 + x + y)) = (1, 0)

(2 + 2x + 2y,−1 − x − y) = (1, 0)

Therefore 2 + 2x + 2y = 1 and −1 − x − y = 0. Simplifying, we get the system

2x + 2y = −1

x + y = −1



which has no solution. Therefore no such vector can exist.

Since the above proposition holds for (1, 0), there is no zero vector.

A5: If there is no zero vector, then A5 can not hope to hold.

M1: Let k ∈ R, (x, y) ∈ V . Then
k(x, y) = (kx, ky) ∈ V.

Therefore M1 holds.

M2: Let k ∈ R, and let (a, b), (c, d) ∈ V . Then

k((a, b) + (c, d)) = k(2(a + b + c + d),−1(a + b + c + d))

= (2k(a + b + c + d),−k(a + b + c + d))

= (2(ak + bk + ck + dk),−1(ak + bk + ck + dk))

= (ak, bk) + (ck, dk)

= k(a, b) + k(c, d)

Therefore M2 holds.

M3: I claim that M3 fails. To show this, I need to produce two real numbers r and s, and a pair (x, y) ∈ V such that
(r + s)(x, y) 6= r(x, y) + s(x, y).

Let r = s = 1, and let (x, y) = (1, 0). Then

(r + s)(x, y) = (1 + 1)(1, 0)

= 2(1, 0)

= (2, 0),

but...

r(x, y) + s(x, y) = 1(1, 0) + 1(1, 0)

= (1, 0) + (1, 0)

= (2(1 + 0 + 1 + 0),−1(1 + 0 + 1 + 0))

= (4,−2) 6= (2, 0)

Therefore M3 fails.

M4: Let r, s ∈ R, (x, y) ∈ V . Then

r(s(x, y)) = r(sx, sy)

= (r(sx), r(sy))

= ((rs)x, (rs)y)

= (rs)(x, y).

Therefore M4 holds.

M5: For any (x, y) ∈ V ,
1(x, y) = (1x, 1y) = (x, y).

Therefore M5 holds.

Thus, V is not a vector space. All the axioms hold except A4, A5, and M3.



Question. Is the set of all vectors in R
3 that are perpendicular to (5, 4, 3) a vector space.

Solution. The set we are looking at is:
V = {u : u • (5, 4, 3)}.

Since V ⊆ R
3, to show that V is a vector space is suffices to show that V is a subspace of R

3. By the subspace theorem, it
therefore suffices to show that V is closed under addition and under scalar multiplication.

To show that V is closed under addition, let u,v ∈ V , that is,

u • (5, 4, 3) = (u1, u2, u3) • (5, 4, 3) = 5u1 + 4u2 + 3u3 = 0,

and similarly
v • (5, 4, 3) = (v1, v2, v3) • (5, 4, 3) = 5v1 + 4v2 + 3v3 = 0.

It remains to show that
u + v = (u1, u2, u3) + (v1, v2, v3) = (u1 + v1, u2 + v2, u3 + v3) ∈ V.

To show this, we must show that
(u1 + v1, u2 + v2, u3 + v3) • (5, 4, 3) = 0.

(u1 + v1, u2 + v2, u3 + v3) • (5, 4, 3) = (u1 + v1)(5) + (u2 + v2)(4) + (u3 + v3)(3)

= 5u1 + 5v1 + 4u2 + 4v2 + 3u3 + 3v3

= (5u1 + 4u2 + 3u3) + (5v1 + 4v1 + 3v3)

= 0 + 0 (since u,v ∈ V )

= 0

Therefore u + v ∈ V .

To show that V is closed under scalar multiplication, let k ∈ R, and let u = (u1, u2, u3) ∈ V . It remains to show that ku ∈ V ,
that is, that

k(u1, u2, u3) = (ku1, ku2, ku3) ∈ V.

ku • (5, 4, 3) = (ku1, ku2, ku3) • (5, 4, 3)

= ku1(5) + ku2(4) + ku3(3)

= k(5u1 + 4u2 + 3u3)

= k(0) (since u ∈ V )

= 0

Therefore ku • (5, 4, 3) = 0, and so ku ∈ V . Therefore by the subspace theorem, V is a subspace of R
3, and is thus a vector

space.



Question. Let S be the set of solutions to the system of equations

3x + y − z = 0
x + y + 2z = 0
4x + 2y + z = 0.

Is S a subspace of R
3?

Solution. By the subspace theorem, since R
3 is a vector space, it suffices to check if S is closed under addition and under

scalar multiplication.

1) (Closure under addition, version 1): Let u,v ∈ S, say u = (u1, u2, u3), v = (v1, v2, v3). Then by the definition of S, we
know that:

3v1 + v2 − v3 = 0 3u1 + u2 − u3 = 0
v1 + v2 + 2v3 = 0 u1 + u2 + 2u3 = 0
4v1 + 2v2 + v3 = 0 4u1 + 2u2 + u3 = 0.

Then u+v = (u1 + v1, u2 + v2, u3 + v3). We need to check that u+v ∈ S, that is, we need to check that it is a solution
to each equation in the system.

First Equation:

3(u1 + v1) + (u2 + v2) − (u3 + v3) = 3u1 + 3v1 + u2 + v2 − u3 − v3

= (3u1 + u2 − u3) + (3v1 + v2 − v3)

= 0 + 0

= 0.

Second Equation:

(u1 + v1) + (u2 + v2) + 2(u3 + v3) = u1 + v1 + u2 + v2 + 2u3 + 2v3

= (u1 + u2 + 2u3) + (v1 + v2 + 2v3)

= 0 + 0

= 0.

Third Equation:

4(u1 + v1) + 2(u2 + v2) + (u3 + v3) = 4u1 + 4v1 + 2u2 + 2v2 + u3 + v3

= (4u1 + 2u2 + u3) + (4v1 + 2v2 + v3)

= 0 + 0

= 0.

Therefore u + v is also a solution to the system of equations. Therefore u + v ∈ S, and therefore S is closed under
addition.

2) (Closure under scalar multiplication, version 1): Let k ∈ R, and let u = (u1, u2, u3) ∈ S. Then u is a solution to the
system of equations. We need to show that ku = (ku1, ku2, ku3) is also a solution to the system.

First Equation:

3(ku1) + (ku2) − (ku3) = k(3u1 + u2 − u3)

= k(0)

= 0.

Second Equation:

(ku1) + (ku2) + 2(ku3) = k(u1 + u2 + 2u3)

= k(0)

= 0.



Third Equation:

4(ku1) + 2(ku2) + (ku3) = k(4u1 + 2u2 + u3)

= k(0)

= 0.

Therefore ku is also a solution to the system, that is, ku ∈ S. Therefore S is closed under scalar multiplication.

1) (Closure under addition, version 2): We can rewrite the system

3x + y − z = 0
x + y + 2z = 0
4x + 2y + z = 0.

as the matrix equation




3 1 −1
1 1 2
4 2 1









x

y

z



 =





0
0
0



 .

Let A =





3 1 −1
1 1 2
4 2 1



, let x =





x

y

z



, and let 0 =





0
0
0



.

Let u = (u1, u2, u3),v = (v1, v2, v3) ∈ S. Then viewing u and v as column matrices, we have that Au = 0 and Av = 0,
and viewing u + v as a column matrix, we have:

A(u + v) = Au + Av

= 0 + 0

= 0.

Therefore u + v is also a solution to the system, and so u + v ∈ S. Therefore S is closed under addition.

2) (Closure under scalar multiplication, version 2): Let k ∈ R, and let u = (u1, u2, u3) ∈ S. Then u is a solution to the
system of equations, that is, Au = 0 (again viewing u as a column matrix). We need to show that ku is also a solution
to the system.

A(ku) = k(Au)

= k(0)

= 0.

Therefore ku is also a solution to the system, and so ku ∈ S. Therefore S is closed under scalar multiplication.

So, since S is closed under addition, closed under scalar multiplication, and is a subset of the vector space R
3, it follows by

the subspace theorem that S is a subspace of R
3.


